
MathML
and other XML Technologies for Accessible PDF from LATEX

Frank Mittelbach
frank.mittelbach@latex-project.org

LATEX Project
Mainz Germany

Ulrike Fischer
fischer@troubleshooting-tex.de

LATEX Project
Bonn Germany

David Carlisle
d.p.carlisle@gmail.com

LATEX Project
Oxford UK

Joseph Wright
joseph@texdev.net

LATEX Project
Ely UK

Abstract
In this paper we describe the current approach to using MathML
within Tagged PDF to enhance the accessibility of mathematical
(STEM) documents. While MathML is specified by the PDF 2.0 spec­
ification as a standard namespace for PDF Structure Elements, the
interaction of MathML, which is defined as an XML vocabulary,
and PDF Structure Elements (which are not defined as XML) is left
unspecified by the PDF standard. This has necessitated the devel­
opment of formalizations to interpret and validate PDF Structure
Trees as XML, which are also introduced in this paper.

CCS Concepts
• Software and its engineering → Open source model; • Applied
computing → Format and notation; Document metadata; •
Human-centered computing → Accessibility technologies; •
Information systems → Document structure.

Keywords
Accessibility, PDF/UA, Well Tagged PDF, LaTeX, Mathematics, XML
ACM Reference Format:
Frank Mittelbach, Ulrike Fischer, David Carlisle, and Joseph Wright. 2025.
MathML and other XML Technologies for Accessible PDF from LATEX. In
ACM Symposium on Document Engineering 2025 (DocEng ’25), September
2–5, 2025, Nottingham, United Kingdom. ACM, New York, NY, USA, 4 pages.
https://doi.org/10.1145/3704268.3748669

1 Introduction
Traditional mathematical notation requires specialist accessibility
support to navigate the two-dimensional layout and to express the
large set of symbols as speech or Braille. PDF 1.𝑥 accessibility stan­
dards treat mathematical formulae essentially as images. Accessibil­
ity is just provided by supplying a text string. Such a string does not
allow navigation into subterms, and is usually unsuitable for Braille.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full
citation on the first page. Copyrights for components of this work owned by others
than the author(s) must be honored. Abstracting with credit is permitted. To copy
otherwise, or republish, to post on servers or to redistribute to lists, requires prior
specific permission and /or a fee. Request permissions from permissions@acm.org.
DocEng ’25, Nottingham, United Kingdom
© 2025 Copyright held by the owner/author(s). Publication rights licensed to ACM.
ACM ISBN 979-8-4007-1351-4/2025/09
https://doi.org/10.1145/3704268.3748669

To address this, PDF 2.0 introduced the possibility of embedding
MathML within the PDF, either as an associated (embedded) file
attached to each formula, or as PDF Structure Elements, using tag
names modelled on the standard MathML element names.

In this paper we discuss the current approaches taken to enhance
PDF documents produced by LATEX with MathML tagging, and more
general issues relating to interpreting PDF Structure Elements as
XML for validation or other purposes.

2 MathML in PDF
The PDF 2.0 accessibility standard, PDF/UA-2, mandates that all
mathematical content is associated to MathML, either as an Associ­
ated File or tagged using the Structure Elements from the MathML
namespace (which it does not define, other than by reference to the
MathML Recommendation).

Using Associated Files to embed MathML is relatively simple,
as the MathML may be produced by external conversion from the
original sources (several such tools exist) and simply referenced by
a property on the PDF Formula tag. If this is passed to an AT (Assis­
tive Technology) system it will allow the mathematics to be spoken,
or Braille generated. However currently not many PDF readers will
recognize files embedded in this way, and as the MathML is just
associated with the start of the formula, navigating the accessi­
ble version of the mathematics cannot be synchronised with the
navigation of the visual rendering.

Recent releases of LATEX have included the luamml package
which, if LuaTEX is used as the typesetting engine, will convert
the TEX mathematics to MathML during the typesetting phase. This
can be used to create the Associated File and embed it during the
compilation without external tools.

The luamml package also now allows the use of the second
method of associating MathML, where each term of the expression
is separately annotated with PDF Structure Elements using the
MathML namespace.

The PDF 2.0 standard unfortunately just states that MathML PDF
Structure Elements may be used, but it gives no definition of these
elements. Despite some similarities (both PDF Structure Elements
and XML encode annotated trees) there is no formal definition of
how to construct these MathML elements, which by definition are
XML, as PDF Structure Elements. The LATEX Project have proposed
an explicit mapping between PDF and XML elements documented
at [6]. This has been agreed with the relevant working groups at

https://orcid.org/0000-0001-6318-1230
https://orcid.org/0009-0009-1456-9592
https://orcid.org/0009-0005-3048-4899
https://orcid.org/0000-0001-9603-1001

 1 . 𝑥

$1.x$

 | 𝑥 |

$|x|$

 𝑥

x

x

$1.x$

 (3) 𝑎 + 𝑏 = 𝑐 (4) 𝑐 = 𝑑

\begin {align}a+b&=c\\ c&=d\end {align}

 𝑥 + 𝑦

$x+y$

 𝑥

$\sqrt {x}$

$\sqrtsign {}$

 𝑥 ‾

$\overline {\phantom {x}}$

x

x

 𝑋 = (𝑎 𝑏)

$X=\begin {pmatrix}a\\b \end {pmatrix}$

$1.x$

$1.x$

https://doi.org/10.1145/3704268.3748669
https://doi.org/10.1145/3704268.3748669

DocEng ’25, September 2–5, 2025, Nottingham, United Kingdom Frank Mittelbach, Ulrike Fischer, David Carlisle, and Joseph Wright

the PDF Association and hopefully will form the basis of a future
publication.

However despite the preliminary nature of this mapping specifi­
cation, there is already a working agreement between implementa­
tions that MathML encoded as PDF Structure Elements in this way
will be recognized by AT systems. In particular NVDA screen reader
and Adobe Acrobat PDF viewer may be used with files encoded in
this way, and support in the Foxit PDF Reader is being developed.

These recent developments in LATEX, together with parallel devel­
opments in screen reader applications (NVDA and MathCAT), PDF
readers (Foxit) and coordination and clarification on the PDF spec­
ifications within the PDF Association Technical Working Groups,
mean that there is now a complete workflow available for accessible
technical or mathematical documents. Starting from a LATEX source,
one may generate well tagged PDF in which the document struc­
ture, including mathematical formulas, are exposed in an accessible
way to screen readers, Braille displays and other accessibility tools.

2.1 MathML Attributes
The encoding of MathML attributes causes particular difficulties.
Some attributes such as id correspond to PDF Properties although
the PDF Property to encode a unique identifier is ID so even here
there has to be some name mapping. But more general attributes
are encoded using the PDF Structure Attributes, which are quite
unlike XML attributes, having names consisting of two parts, an
Owner and a Name, and a value that may reference arbitrary PDF
Structures. In common with most other XML vocabularies MathML
attributes are unprefixed and not in a namespace. However by
agreement with the PDF Technical Working Groups, the represen­
tation in PDF is using the MathML namespace. This complicates the
mapping and the full details are in the web page referenced above.

2.1.1 PDF Properties. PDF Structure Elements (SE) have a small
number of pre-defined Properties. The most important in this con­
text being ID and Lang. These are directly mapped to XML attributes,
but with some name changes so the resulting XML is consistent
with existing schema for XHTML and MathML. The full list is given
by the following table

 SE Property XML Attr. SE Property XML Attr.

 AF af Lang lang
 ActualText actualtext Phoneme phoneme

 Alt alt PhoneticAlphabet phonetic-alphabet
 C class R revision
 E expanded T title

 ID id

2.1.2 PDF Structure Attributes. In addition to the Properties shown
in the previous section, PDF Structure Elements may have Attributes.
In many cases the attribute value is a simple value such as a string
or a number that may be directly encoded in XML, but arrays of
values are also possible, and in general a PDF Structure Attribute
may reference any PDF Object including binary streams that have
no natural encoding as an XML attribute.

However for practical reasons, these Structure Attributes are
modelled as XML attributes by the following mapping.
• A PDF Structure Attribute with Owner owner and Name name is

represented by the XML attribute owner:name where the prefix

owner: is associated to the namespace URI http://iso.org/
pdf/ssn/owner.

• PDF 2.0 introduced an extension mechanism to allow systems
to add new attributes. If the owner is the special Keyword NSO
(Namespace Owner) then a namespace URI is supplied in an ad­
ditional NS property. The following convention for representing
attributes in no-namespace has been agreed with the PDF UA
Technical Working Group.
If the Owner is NSO then the attribute is represented in XML by
an attribute in the namespace given by the NS property unless the
NS property references the same namespace object as the parent
element, in which case an attribute in no-namespace is used.
This allows a MathML element such as <mo lspace="2pt"> to
be represented by a Structure Element mo having NS property
referencing the MathML namespace, and attribute lspace with
O (owner) NSO and NS referencing the same PDF namespace
object as the mo element.

• The value of the PDF Structure Attribute must be linearized into
an XML compatible string and represented as the value of the
XML attribute.

2.2 Intent
One of the main novel features in MathML 4 [1] is a new attribute
intent which allows the MathML generation system to add anno­
tations.

A main motivating example is the notation |𝑥| which may denote
the absolute value of 𝑥 or the cardinality (size) of 𝑥 or several other
meanings depending on context.

This may now be encoded as

 <mrow intent="absolute-value($x)">
 <mo>|</mo> <mi arg="x">x</mi> <mo>|</mo>
 </mrow>

As well as disambiguating the meaning, the intent system al­
lows AT systems to provide localised readings of the formula. Also
(unlike earlier approaches of providing alternative text strings, as
used for PDF 1.𝑥) this does not interfere with Braille production.
In a Braille display you need to generate a compact string corre­
sponding directly to the notation |x|. The Braille for the English
language “alt-text” “a-b-s-o-l-u-t-e-v-a-l-u-e o-f x” would
be impossibly verbose.

LATEX can already add these intent annotations in some cases
but longer term the expectation is that packages providing com­
mands such as \abs will be able to specify intents to use for tagging
contexts as part of the LATEX command definition.

One important use of intent that is already automatically added
by LATEX is the encoding of displayed equations. A display such as

𝑎 + 𝑏 = 𝑐 (3)
𝑐 = 𝑑 (4)

is encoded in MathML as an mtable element, the same element
used for all table constructs such as matrices. LATEX will now gen­
erate <mtable intent=":system-of-equations"> which allows
AT systems to announce this as a system of equations, not as a 2-
by-2 matrix. Similarly the equation numbers (3) and (4) are marked
with <mtd intent="equation-number">, which allows each line

MathML and other XML Technologies for Accessible PDF from LATEX DocEng ’25, September 2–5, 2025, Nottingham, United Kingdom

of the display to be announced as “line with label …” rather than
the “(3)” being read as part of the mathematical data of the formula.

The result of LATEX embedding this MathML with additional
intent annotations is that the above display is read by the screen
reader (using NVDA and MathCAT from Acrobat or Foxit PDF
viewers) as

line 1 with label 3; a plus b is equal to c
line 2 with label 4; c is equal to d

Note this requires no additional markup from the document author.
The display structurally is a three column table: one column for

each side of the equation, and an extra, first, column for the equa­
tion number. If the intent of the mtable is changed to :matrix
the reading is

the 2 by 3 matrix;
row 1; column 1 3; column 2 a plus b; column 3 is equal to c
row 2; column 1 4; column 2 c; column 3 is equal to d

If neither :system-of-equations nor :matrix is specified as an
intent, the reading relies on the underlying AT system to infer the
correct structure. In practice, it is recognized as a system of equa­
tions, but the equation labels are not announced and the equation
numbers are read as part of the mathematical expression, which
can be very confusing for the reader.

See [8] for a list of all the core properties currently being devel­
oped by the W3C Math Working Group for MathML 4. MathML 4
is not yet a final W3C recommendation; however, these properties
are already implemented by MathCAT and can be demonstrated
when reading PDF files from Acrobat or Foxit PDF readers.

2.3 Hiding displayed content from AT
Conceptually to tag a mathematical expression you just need to tag
each term with appropriate MathML, so 𝑥 + 𝑦 might be encoded
in XML as: <math><mi>x</mi><mo>+</mo><mi>y</mi></math>.

In the PDF stream the MathML elements are represented by
Structure Elements but the text content is not directly added to the
Structure Tree, it is represented by references to the content stream
used for the typeset display, so called Marked Content Sequences.

This can cause difficulties for square roots and other constructs
where visual components correspond to the markup and not just
the character data. An expression such as √𝑥 will have items in the
content stream used for typesetting corresponding to a √, to a rule
and to 𝑥. As the MathML is <msqrt><mi>x</mi></msqrt> only the
𝑥 should be referenced from the Structure Tree. The other items all
need to be marked as Artifact in the content stream so that they are
not used in the AT rendering. For a large range of expressions LATEX
can automatically detect such cases and add appropriate tagging,
but due to the expressive nature of the TEX input, this is hard to
get right in all cases and further improvements are expected in this
area. Similar issues arise with large delimiters, e.g.,

𝑋 = (𝑎𝑏)

The generated MathML for the large left parenthesis needs to be
<mo>(</mo> with a standard “(” character, however, there is no such
character in the content stream that can be referenced. The PDF

content stream will have several glyphs making up parts of the
extendable character stacked vertically. So it is necessary to both
hide these glyph parts and to provide a standard character. This
is achieved by referencing the content stream from the mo Struc­
ture Element as normal, but marking the Content Stream with an
ActualText Property of “(”. ActualText is a standard PDF Property
that causes the marked content to be replaced by the specified “(”
in most uses other than rendering, in particular when generating
content for AT or for cut-and-paste from the PDF.

2.4 Validation of the MathML
As PDF Structure Elements are embedded in the PDF document and
do not correspond to any existing markup system such as SGML
or XML, there is no standard way to validate the structure in a
PDF document. PDF validators will not validate MathML embed­
ded as an Associated File, other than checking that the reference
is valid. If MathML is encoded using MathML Structure Elements
then it will either be classed as invalid (as the system does not
recognize MathML) or the whole MathML expression may be ac­
cepted even if the MathML encoding is incorrect as no checking
of the MathML structure is done. To address this issue the LATEX
Project have utilised the mapping from PDF Structure Trees to
XML discussed in [6] and implemented (using the Lua interface to
PDF files provided by LuaTEX) a tool, show_pdf_tags, to extract
an XML representation of the Structure Tree of any Tagged PDF
file. XML (Relax NG) Schema have been developed capturing (as
far as possible) the constraints described in the PDF standards and
including the standard MathML Schema that is described in the
MathML Recommendation [1]. Currently the Schema for MathML
Core [9] is used, as this is the version of MathML implemented in
web browsers, and includes the additional attributes for accessi­
bility such as intent discussed above. The tool and the Relax NG
Schema are described in more details in the next section.

3 Relax NG Schema for PDF Structure Trees
Expressing a PDF Structure Tree as XML has many benefits in addi­
tion to the original motivation of checking the embedded MathML
in mathematical documents. Having the structure in a standard
format such as XML allows it to be validated or queried by a far
wider set of tools.

The extraction lua script show_pdf_tags and the Relax NG
Schema are all available as Open Source software on GitHub [5],
and are also currently provided as an online service [4] which al­
lows any Tagged PDF file to be uploaded. The XML representation
of the Structure Tree is then shown in the browser along with the
result of validating the XML with Relax NG Schema.

The structure of the Schema mostly follows the containment
rules in ISO 32005 [2] (including proposed updates). The elements
are in the “pdf2” namespace (http://iso.org/pdf2/ssn) as spec­
ified by the PDF 2.0 standard. The schema ensures that if PDF 2
elements such as Em are used in the PDF 1.𝑥 Schema the element
must have a role mappping to a standard PDF 1.𝑥 Structure Element
such as Span element to meet the requirements of the relevant
accessibility standard PDF/UA-1. The schema also allows validation
of the standard PDF Structure Attributes (which are not mentioned
in the containment rules in ISO 32005). For example, PDF Structure

DocEng ’25, September 2–5, 2025, Nottingham, United Kingdom Frank Mittelbach, Ulrike Fischer, David Carlisle, and Joseph Wright

Attributes include TextAlign with Owner Layout, which is repre­
sented in XML with a Layout namespace and a Schema fragment
 attribute Layout:TextAlign
 { "Start" | "Center" | "End" | "Justify"}?,

which allows both the attribute name and attribute value to be
validated. Currently all standard Structure Attributes that take an
enumerated list of values are represented in the same way.

Attributes that take more general values such as lengths or color
expressions do not currently have the values constrained by the
Schema, typical examples would be
 attribute Layout:TextDecorationColor {text}?,
 attribute Layout:TextDecorationThickness {text}?,

This allows the attribute name to be validated, but any value is cur­
rently allowed by the Schema. As PDF lengths are just expressed as
floating point numbers they could potentially be directly validated
in the Relax NG Schema by replacing “text” by a reference to a
numeric type. Similarly, as Relax NG may constrain values with
regular expressions, it would be possible to at least constrain color
expressions to invalidate clearly invalid expressions although this
is not attempted by the current Schema.

3.1 Extension Schema for Custom Elements
Tagged PDF documents may utilize custom Structure Elements de­
fined by the generating application and identified by a namespace
URI specified by the authoring system. Any such custom element
must have a role mapping to another element, and these Role maps
must eventually resolve to one of the Standard Structure elements
from PDF 1.7, PDF 2.0 or MathML namespaces.

The role map system allows Tagged PDF documents to use cus­
tom tags targeted at specific systems, but with an automatic fallback
mechanism so they may be used by systems that do not implement
the custom tags.

A particular use of custom elements is a set of elements being
developed for PDF generation from LATEX. These closely model the
structure inherent in the source document, while allowing graceful
fallback to the more generic Standard Structure Elements defined
by PDF. A schema that encodes the current set of elements used
is already available and described in [6].

As the PDF specifications provide no mechanism to specify the
constraints on element nesting that should apply to these custom el­
ements, existing PDF validators almost all rely on the role mapping
and just validate the structure implied by the Standard Structure
Elements. Using XML to represent the PDF Structure Tree as de­
scribed here makes available standard validation technologies such
as DTD, W3C Schema and Relax NG Schema. These are all designed
to easily specify languages that are extended by addition of new
elements to an existing vocabulary.

A simple example in the LATEX collection of Tagged PDF files [3]
is a tagged version of the (American Standard Version) Bible. This
uses custom Structure Elements: Testament, Book, Chapter, Verse.
Each of these elements is Role mapped to the generic Sect Standard
Structure element for sectioning. While the PDF may be validated<
using standard PDF tools such as VeraPDF [7], the validation would
still have succeeded if the nesting of the custom elements had been
incorrect and, for example, a Book was nested inside a Chapter,
because after role mapping these are all Sect.

Conversely it is easy to validate the extracted XML representa­
tion against a latex-bible schema that first imports the general
LATEX schema, then defines the element Chapter to have a title,
possibly some preliminary text, and then a sequence of Verse, so an
attempt to nest a Book within a Chapter would lead to a validation
error.

4 Summary and Outlook
With the ability to represent mathematical content as MathML in
the PDF output, LATEX is now capable of producing accessible STEM
documents in an automated fashion, in particular without the need
for any post-processing activities.

This is an important achievement, because only through au­
tomation that does not require undue extra effort by the document
author (who often does not see accessibility as an important goal
but as an enforced burden) there is a chance that most, if not all,
STEM documents become accessible from the outset.

While full automation that generates a reasonable and usually ac­
curate representation is important as a basis, there are limits to what
can be achieved in this way. This is similar to LATEX offering reason­
able default structures for describing documents. It is clear that this
is not enough to represent the structural nuances of all conceivable
documents. LATEX therefore offers ways to define new and more
granular structures. In a similar way, the current automatic produc­
tion of accessible documents needs augmentation to allow the doc­
ument authors to adjust, correct, or extend the interpretation of the
LATEX source, especially if enhanced with author-defined structures,
but also if, for example, the default interpretation of a mathematical
construct does not reflect the usage in the author’s field.

Related to this necessity for extended structures, the interpre­
tation of PDF Structure Trees as XML and the ability to validate
such trees using an extensible grammar, for the first time, gives the
possibility of specifying and validating custom tagging structures
in PDF, independently of whether they are generated by LATEX.

Researching which accessibility improvements are necessary
and developing from that data a concise and easy to use interface
will be among the tasks to further improve PDF accessibility for
STEM documents generated from LATEX.

References
[1] David Carlisle (Ed.). 2025. Mathematical Markup Language (MathML) Version 4.0 .

https://www.w3.org/TR/mathml4/
[2] ISO 2023. ISO/TS 32005:2023 (1st ed.). ISO. https://iso.org/en/contents/data/

standard/04/58/45878.html PDF 1.7 and 2.0 structure namespace inclusion.
https://iso.org/en/contents/data/standard/04/58/45878.html.

[3] LATEX Project Team. 2024. WTPDF / PDF/UA-2 Examples by the LATEX Project.
https://github.com/latex3/tagging-project/discussions/72.

[4] LATEX Project Team. 2025. PDF Structure Tree Display and Validation.
https://texlive.net/showtags.

[5] LATEX Project Team. 2025. The show_pdf_tags Tool. https://github.com/latex3/
pdf_structure.

[6] LATEX Team. 2025. Interpreting a PDF Structure Tree as XML. https:
//github.com/latex3/tagging-project/discussions/789

[7] veraPDF consortium. 2024. Industry Supported PDF/A Validation.
https://verapdf.org.

[8] W3C Math Working Group. 2025. MathML Document Repository – Core Intent
Property List. https://w3c.github.io/mathml-docs/intent-core-properties/.

[9] W3C Math Working Group. 2025. MathML Document Repository – Schema for
MathML Core. https://github.com/w3c/mathml-schema/blob/main/xsd/mathml4-
core.xsd.

Received 3 June 2025; accepted 10 July 2025

https://www.w3.org/TR/mathml4/
https://iso.org/en/contents/data/standard/04/58/45878.html
https://iso.org/en/contents/data/standard/04/58/45878.html
https://iso.org/en/contents/data/standard/04/58/45878.html
https://github.com/latex3/tagging-project/discussions/72
https://texlive.net/showtags
https://github.com/latex3/pdf_structure
https://github.com/latex3/pdf_structure
https://github.com/latex3/tagging-project/discussions/789
https://github.com/latex3/tagging-project/discussions/789
https://verapdf.org
https://w3c.github.io/mathml-docs/intent-core-properties/
https://github.com/w3c/mathml-schema/blob/main/xsd/mathml4-core.xsd
https://github.com/w3c/mathml-schema/blob/main/xsd/mathml4-core.xsd

	Abstract
	1 Introduction
	2 MathML in PDF
	2.1 MathML Attributes
	2.2 Intent
	2.3 Hiding displayed content from AT
	2.4 Validation of the MathML

	3 Relax NG Schema for PDF Structure Trees
	3.1 Extension Schema for Custom Elements

	4 Summary and Outlook
	References

