
TUGboat, Volume 0 (9999), No. 0 draft: March 25, 2024 12:13 ?1

Enhancing LATEX to automatically produce
tagged and accessible PDF∗

Frank Mittelbach, Ulrike Fischer

This paper was initially presented at the 5th Interna-
tional Workshop on “ Digitization and E-Inclusion in
Mathematics and Science 2024” (DEIMS 2024) 15–17
February 2024, at Nihon University, Tokyo, Japan.
This version contains some minor updates.

The complete program and material on all pre-
sentations can be found at the workshop website [1].
A video of the talk and the demonstration is available
at https://youtu.be/7FnZv5FhmRg&?t=9869.

Abstract
At the TUG 2020 online conference the LATEX Project
Team announced the start of a multi-year project
to enhance LATEX so that it will fully and naturally
support the creation of structured document formats,
in particular the “ tagged PDF” format as required
by accessibility standards such as PDF/UA.

In this talk we present the current achievements
of this project1 and the issues we encountered along
the way. We also outline open areas of research
and the future steps that we shall take to automati-
cally produce well-tagged PDF that supports acces-
sible standards (in particular, the recently finalized
PDF/UA-2) as well as general reuse and further con-
versions. This will be achieved by embedding in the
PDF a comprehensive description of the document
structure.

Contents
1 General overview ?1

1.1 The goals of the multi-year
“ LATEX Tagged PDF” project 901

1.2 Current status and achievements 902
1.3 Ongoing and future project tasks 903

2 Specific aspects of the project work ?3
2.1 The existing tag set support in PDF . . . 903
2.2 The LATEX namespace 904
2.3 Formulas in STEM documents 904

∗ This article is a fully tagged and accessible PDF produced
by the project software it describes.

1 This project is carried out by a small number of devel-
opers. Besides the authors, the following individuals from
the LATEX Project Team are actively involved: Chris Rowley,
David Carlisle, Joseph Wright, Marcel Krüger, and Phelype
Oleinik.

We also wish to acknowledge the contributions from various
members of the TEX community and beyond; these have
been made through comments and suggestions, and more
recently through the testing of the new functionality made
available in the form of prototype implementations. Without
such feedback it would be difficult to finish this project with
satisfactory results.

2.4 Extensions to LATEX’s table handling . . . 905
2.5 Support for different scripts and

languages 906

3 Some TEXnical details ?6
3.1 How to enable tagging 906
3.2 Inclusion of external MathML 907

1 General overview
For over 30 years now, the LATEX system has been
used, widely and successfully, for document produc-
tion in the STEM world and also in other places
where high-quality output is required; but until re-
cently its focus was solely on page-oriented output
for print (on paper) or as paged output using the
PDF format. Therefore, the structural information
about the document that was present in the LATEX
source did not get incorporated into the PDF output.
Rather, this information was discarded as soon as
possible during the processing; this was necessary so
as to conserve the limited computer resources (mem-
ory and storage) that were typically available at that
time (when the core of the LATEX processing model
was first designed).

As long as the intention is only to print a docu-
ment on a physical medium, then this is all that is
required. However, for quite a while now other uses
of documents have been increasing in importance so
that nowadays many documents are never printed,
or printed only as a secondary consideration.

Coming into the 21st century, for many reasons
great interest has arisen in the production of PDF
documents that are “ accessible”, in the sense that
they contain information to assist screen reading
software, etc., and, more formally, that they adhere
to the PDF/UA (Universal Accessibility) standard [3,
6], which is explained further in [2].

At present, all methods for producing such “ ac-
cessible PDFs”, including the use of LATEX, require
extensive manual labor2 during either the prepara-
tion of the source or the post-processing of the PDF
(maybe even at both stages); and these labors of-
ten have to be repeated after making even minimal
changes to the (LATEX or other) source.

1.1 The goals of the multi-year
“ LATEX Tagged PDF” project

The main goal of the project is to enhance LATEX so
that it can automatically produce tagged PDF with-
out the need to add additional data or commands to
the LATEX source, or to do any of the post-processing
work necessary in other workflows.

2 If not using the already existing code extensions to LATEX
provided by the project.

Enhancing LATEX to automatically produce tagged and accessible PDF

https://youtu.be/7FnZv5FhmRg&?t=9869

?2 draft: March 25, 2024 12:13 TUGboat, Volume 0 (9999), No. 0

If it remains necessary to alter substantially, or
to extend, each individual document in order to pro-
vide tagged PDF that conforms to some accessibility
standard, then we shall see very few document au-
thors willing to go through the pain of making such
additions (unless they are forced to). It is therefore
of utmost importance that the generation of tagged
PDF be done essentially behind the scenes, with the
only cost to the authors being a somewhat longer
compilation time.

Another important aim is to make already ex-
isting documents accessible by simply recompiling
them without the need to alter the source in any
substantial way.3

The project will support the PDF 2.0 standard [4]
(with the very widely supported PDF 1.7 as a fall-
back solution), because the PDF 2.0 standard offers
a more comprehensive tag set, and it supports as-
sociated files and many other important features;
its use is also a requirement of the new PDF/UA-2
standard [6].

Unfortunately, even though PDF 2.0 has already
existed for six years, it has yet to be adopted for
industry solutions; e.g., most viewers and other ap-
plications are still incapable of making correct use of
the new PDF 2.0 features. This is largely a chicken-
and-egg problem: because nobody produced 2.0 files,
no application was specifically extended to enable
processing such files; and due to the fact that no
viewer could handle such files, the developers of PDF
writers saw no need to invest in the technology to
produce PDF 2.0 files.

As a result, LATEX is one of the first authoring
applications that can produce PDF 2.0 files automat-
ically and in large quantities. In particular, LATEX
is capable of producing documents compliant with
PDF/UA-2, the new standard for Universal Acces-
sibility [6] that was finalized in 2023 and will be
officially released in early 2024.4 No doubt other
suppliers will follow our lead when there is sufficient
demand for the production and processing of PDF 2.0
and PDF/UA-2 conformant files.

The document entitled “ LATEX Tagged PDF Fea-
sibility Evaluation” [10], available from the LATEX
Project website [8], explains in detail both the project

3 Of course, required data that is not part of the docu-
ment source (such as alternative text for figures or additional
metadata) will need to be manually added, so as to ensure
that the document is compliant with PDF/UA. But even if
this work is not undertaken, the fact that the document gets
automatically tagged will mean that it can be easily navigated
and consumed in ways that were impossible before.

4 At the moment we can only claim that the project soft-
ware is capable of producing documents that comply with the
latest draft of the imminent PDF/UA-2 standard.

goals and the tasks that need to be undertaken, con-
cluding with the project plan that is currently being
executed.

For the time being the project will focus pri-
marily on PDF output (generated either directly by
the TEX engine or through a DVI-based workflow).
However, as a bonus outcome of the design approach,
the implemented solution will make it easy to add
other such output formats to the workflow by simply
replacing the output (backend) module. Instead of
PDF output, HTML5 or some other format can thus
be written. As of now, such alternative backends are
not part of the project coverage, but once LATEX is
able, using well-defined interfaces, to pass structure
information to a backend, we expect that support
for other structured output formats will follow. Such
work may be undertaken by us or by other teams,
possibly in parallel to later phases of the project.

1.2 Current status and achievements
As mentioned earlier, LATEX was originally designed,
as was essential 40 years ago, to be very economical
with computer resources; the implementation there-
fore worked very hard to discard information as soon
as it was no longer needed for the compilation of a
document. For print output, which was all that was
produced back then, these discards included most of
the structural information since this was no longer
useful once the visual representation had been deter-
mined. An important part of the early work on this
project was therefore to alter LATEX’s inner work-
ings by adding code that preserves this structural
information from the source and adds it to the PDF.

Another part of this early “ background” work
was to standardize (and often to provide, for the first
time) code interfaces into which extension packages
can safely hook. The use of these interfaces, rather
than directly overwriting internal LATEX functions (as
was commonly done in the past), avoids the problem
that such packages would often break when used in
certain combinations, or break when LATEX internals
changed. Moreover, it means that these packages can
automatically benefit from the existence of extended
workflows (such as those which produce tagged PDF).

Most of these interfaces are now in place in the
LATEX kernel. What remains (as a huge task) is
to upgrade many of the core extension packages so
that they make use of the new functionalities; this
will enable the retirement of some of the existing
code that directly overwrites LATEX internals, or that
makes assumptions (about those internals) that will
become invalid in the future.

Frank Mittelbach, Ulrike Fischer

TUGboat, Volume 0 (9999), No. 0 draft: March 25, 2024 12:13 ?3

The next large phase of the project was to pro-
vide automatic tagging for a subset of LATEX doc-
uments. This task is largely finished and therefore
most documents that are restricted to using only
the commands and environments described in Leslie
Lamport’s “ LATEX Manual” [7] can be automatically
tagged by adding a single configuration line at the
top of the document. We say “ largely finished” be-
cause a few such elements, or element combinations,
are not yet covered at the time of writing.

On the other hand, a number of extension pack-
ages that go beyond Lamport are already supported,
most importantly much of amsmath (providing ex-
tended math capabilities) and hyperref (enhancing
LATEX with interactive hyperlinking features). Also
already supported are some of the major bibliography
packages, such as natbib and biblatex.

The project is thus by now capable of produc-
ing PDF 2.0 documents that conform to the new
PDF/UA-2 standard. In fact, after correcting a small
number of issues (not directly related to tagging)
in the class file for this conference we have been
able to deliver this article as a fully tagged PDF 2.0
document.

1.3 Ongoing and future project tasks
At present, tagging support for the core document el-
ements in a LATEX document is still at the prototype
level, which means that it works for the standard
LATEX classes and for the document elements pro-
vided by the LATEX kernel, but it may or may not
work with extension packages or classes that alter
the implementation of these document elements, or
that provide completely new elements.

To make further progress, some of the interfaces
for tagging will first need to be finalized. Then all
major extension packages, as well as all important
third-party document classes, will need analyzing and
possibly updating.5 The tasks here are to identify
all of the legacy low-level code for which the kernel
now provides tagging-aware replacements, and then,
in cooperation with their maintainers, to make the
necessary updates to all these packages and classes.

In addition, any packages and classes that pro-
vide new document elements will need to specify
how these elements are supposed to be tagged. Some
interfaces already exist to help with this process, but
it is likely that most of these will require further
refinement when tested in the field.

5 The number of widely used packages, e.g., those described
in The LATEX Companion, third edition [9], amounts to roughly
500, so this evaluation and code adjustment forms a substantial
part of the remaining project work, and most likely will require
additional volunteer support.

The remaining phases of the project, as outlined
in the “ Feasibility Evaluation Study” [10], cover fur-
ther support for other PDF standards, and an im-
proved interface to comprehensive metadata. There
are also a number of research problems that need
to be solved in order for authors to easily generate
high-quality tagged PDF documents from their LATEX
sources. These are outlined below.

2 Specific aspects of the project work
We now take a look at a few specific aspects of the
project work that are related to challenging problems
and pose interesting research questions. These topics
are: the development of a more granular tag set; the
handling of formulas; the need for an extended table
specification syntax; and the handling of language
and script related requirements.

2.1 The existing tag set support in PDF

When PDF (already in version 1.3) first introduced
a structure tree into the format, to support the in-
clusion of the document’s logical structure, it used
only a fairly minimal set of structure tags that were
largely modeled after the basic HTML tag set.

For example, for mathematical formulas there
was only the <Formula> tag itself, with no possibil-
ity to add further structure within the formula. For
accessibility, all that was available was an “ alt” at-
tribute in which one could add a textual description
of the formula’s content. In a similar manner, other
areas of document structures were (over)simplified
in the tag set: e.g., for all types of floating elements
there is only the tag <Aside> that they must share
with margin notes (and even that tag is available
only in PDF 2.0). For code elements, whether they
are small snippets or long, commented listings, there
is only a single <Code> tag, and there is no option
to accurately describe the handling of spaces and
new lines within code listings. There is a tag (again
only in PDF 2.0) to denote footnotes; but if the
document contains several types of structured (and
possibly nested) notes, then there is no way to ade-
quately describe this without losing possibly crucial
information.

As is also the case with HTML, the relationships
between these tags define a fairly simple document
model that is not sufficiently rich, so that it can-
not express (or not correctly express) many real-life
documents; this is often due to the fact that certain
elements appear in such documents with nesting re-
lationships that are not permitted by the inclusion
rules defined in ISO 32005 [5].

All this means that, when preparing a PDF to
be PDF/UA-2 or PDF/UA-1 compliant, compromises

Enhancing LATEX to automatically produce tagged and accessible PDF

?4 draft: March 25, 2024 12:13 TUGboat, Volume 0 (9999), No. 0

have to be made and some of the structural informa-
tion may thus get lost.

As part of the project we are therefore develop-
ing an extended tag set (currently called the “ LATEX
namespace”) that describes the logical structure of
(complex) documents in more granular detail; this
will help PDF processors (such as viewers) that un-
derstand this namespace to make better use of a
document’s structure. Ideas from this development
may also prove useful in conjunction with future
HTML5 developments.

2.2 The LATEX namespace
LATEX is an open system that allows for structural
extensions (and even changes to structures) in every
direction. It is therefore not possible to define a fixed
(definitive) document model that is both valid and
comprehensive for each and every conceivable LATEX
document.

However, it is possible to define a document
model which captures the majority of LATEX docu-
ments that are out there in the real world. If this
is combined with methods to extend (and possibly
alter) the document model whenever necessary for
special structural extensions or changes, we are con-
fident that a comprehensive solution can eventually
be provided.

As part of the project we are therefore develop-
ing a “ standard namespace” that fully describes the
LATEX document model (in the sense outlined above).
This tag set will thus be noticeably more detailed
and comprehensive than those offered by PDF 2.0
and HTML5. We are working with the PDF Associa-
tion [11] and various application producers to ensure
that this namespace will, when complete, become
a recognized resource (preferably acknowledged in
future revisions of the PDF standard); it may also be
more generally useful as an XML schema. This will,
for example, allow PDF and other applications to
directly use the extended tag set it provides; and this
will enable such applications to make better use of
the information contained in the document, whether
for accessibility support or for other purposes.

For applications that do not (yet) understand
this new namespace, we provide role-mapping back
into PDF 2.0 (or PDF 1.7) as necessary; but of course,
in that case the more granular information provided
by the tags in the new namespace will get at least
partially lost.

Additionally, we will be providing interfaces that
allow package or class developers who extend the
standard LATEX structures to specify how their new
commands or environments map into the LATEX name-

space (and from there, if necessary, are role-mapped
back to the PDF tag set).

2.3 Formulas in STEM documents
LATEX is well-known and appreciated for its ability to
describe and format mathematical or other formulas
with a high degree of flexibility and unsurpassed
quality. This is one of the reasons why we see a huge
proportion of the documents in STEM disciplines
such as mathematics, physics, and computer science
being produced using LATEX.

As described by Neil Soiffer in his keynote for
the DEIMS 2021 conference [12], there are basically
three methods for making such formulas accessible in
a tagged PDF. One option is to use static text that
can be attached as “ alternative” natural language
text to the formula structure, which is then read by
an “ assistive technology” (AT) application. While
rather easy to implement, this method has various
drawbacks: it does not allow for braille generation
or for exploration of the equation; and the text often
must be hand-crafted to avoid problems with read-
ing software whose heuristic usually ignores certain
symbols such as punctuation or braces.

A second option is to add marked-content oper-
ators to the PDF stream and then build a MathML
structure tree that references this marked content.
This method leads to a large structure tree with many
objects, since this tree will be very fine-grained.

There are a number of problems with this sec-
ond approach. It is difficult for LATEX (without the
help of a real programming language) to generate
correct and useful MathML while building the TEX
math list. Furthermore, when the still widely used
pdfTEX engine is producing the PDF, there is a high
chance that the combined processes (of simultane-
ously adding the necessary tagging-related material
to the content stream while formatting the formula)
will alter the spacing of the formula and thus render
the visual representation invalid. There may be tech-
nical solutions to circumvent these issues and this is
an area of active research. However, it is likely that
this option can only be implemented successfully if
the LuaTEX engine is used, because then a suitable
programming language (i.e., Lua) is available and,
furthermore (because of extended functionality in
LuaTEX), it becomes possible to delay adding the
necessary extra material to the content stream un-
til after LATEX has completed the formatting of the
formula with the correct spacing.

The last option is to make use of so-called “ as-
sociated files” (AF) that were introduced in PDF 2.0:
these are files directly embedded into the PDF that

Frank Mittelbach, Ulrike Fischer

TUGboat, Volume 0 (9999), No. 0 draft: March 25, 2024 12:13 ?5

can be attached to a structure element.6 Each such
“ embedded AF” can contain, for example, a MathML
representation for a formula, or its LATEX source or
some additional commentary text; more than one
of these can be attached to each structure. The AF
approach is simpler and easier to implement, and
it also allows the use of MathML representations
that do not closely follow the visual output; but it
has the drawback that the MathML in the AF file
is associated only to the formula as a whole and
it is therefore not possible to synchronize parts of
the MathML representation with the corresponding
parts of the formula in the typeset document, as
is necessary to support navigation of formulas and
highlighting them. This method may require that
the AT software overlays the printed output with
its own rendering of the MathML (which may differ
substantially from the original rendering).

The two last options, MathML in the struc-
ture tree or in associated files, both suffer from a
lack of support in current PDF viewers and AT soft-
ware: Neil Soiffer’s optimistic statement in 2021 that
“ Adobe’s API will likely incorporate this ability in the
future” has not yet come true.

Because of this, LATEX currently follows a three-
fold strategy in the prototype for math tagging: it
incorporates the LATEX source as alternate text for
the formula, under the assumption that the LATEX
syntax is understandable to most readers of mathe-
matics; and it also embeds the LATEX source as an
associated file. Additionally, an external file can
be constructed in which, for all (or a selection of)
the formulas, a MathML representation is provided
that can be embedded in the PDF as associated files.
Such an external file can be created, for example,
with the help of tex4ht or with the LuaTEX engine.
At this point in time there is no fully automatic
workflow implemented for this, but with only a few
adjustments it was already possible to add MathML
associated files to all the formulas in the amsmath
user documentation.

The form of the final solution for formulas, and
whether or not it is necessary to offer customizable
alternatives — to cater for different reader deficien-
cies or different user preferences — are questions that
need active research to understand how to best serve
consumers given the currently limited functionality
of AT tools with respect to “ associated files”, etc.

There is another aspect of common LATEX us-
age that affects all three of these method, and is
also found in many other areas beyond formulas and

6 Note that “ associated files” do not exist as separate
physical entities at the operating system level; thus they are
not in fact “ files” in the normal sense of the word.

STEM: the inclination of authors to invent new sym-
bols, notation systems, and command names. This
is nowadays exacerbated by the widespread failures
to take accessibility into account. Such ad hoc exten-
sions make it difficult to fully automate any tagging
process. Overcoming this will need both technical
support for such extensions and also, perhaps more
importantly, encouragement of authors to keep ac-
cessibility in mind when writing documents.

The approach that will most likely be adopted to
deal with this issue is as follows: by default, assume
that new commands are simply abbreviations and
that, by recursively replacing each of these with its
definition, we eventually get to something that can
be automatically tagged by using standard methods.
For cases where this does not work, there will be
interfaces with which the author of the document
(or the package developer, if the command is de-
fined there) can specify how the command should
be interpreted when providing tagged output (e.g.,
MathML).

2.4 Extensions to LATEX’s table handling
In most cases, the LATEX source will contain all the
necessary information about the logical structure of
a document, so that it is possible to automatically
transform the source into richly tagged PDF output.
There is one noticeable exception: LATEX’s handling
of tabular data. This arises since standard LATEX,
and most extension packages, do not describe table
data through structural information; rather, they
do this in a purely visual fashion, describing only
the content that should go into each cell. Thus no
information is supplied concerning important rela-
tionships between cells, such as which are the header
or sub-header cells, or to which cells some header
cell applies.

Thus, while it is fairly trivial to tag tables as
simply consisting of table rows and table data cells,
determining the header cells can be done only by
the use of heuristics (e.g., cell formatting changes
done through \multicolumn are likely to represent
header cells, or certain rules in a table may indicate
header rows). However, any such heuristic will have
a noticeable number of counterexamples.

It is therefore an important task to develop good
heuristics that correctly cover a large proportion of
the tables in legacy documents; and in addition to
develop a syntax extension for LATEX that allows
authors to specify such logical structure explicitly
in case the heuristics fail or they wish to specify
explicitly the logical structure of the table. This
syntax extension has to be done in a lightweight way,
i.e., without putting an unnecessary burden onto

Enhancing LATEX to automatically produce tagged and accessible PDF

?6 draft: March 25, 2024 12:13 TUGboat, Volume 0 (9999), No. 0

the authors. Furthermore, it should be upwardly
compatible with the existing syntax so that it is
easily possible to enhance documents with only small
alterations to the original source.

It is also important to develop methods that
enable authors to easily check LATEX’s interpretation
of the logical structure of a table without the need
to examine the final PDF, so that they can overwrite
the heuristics when necessary. This is an area of
active research.

2.5 Support for different scripts and
languages

Historically, the TEX engine and LATEX were devel-
oped for ASCII-based, English documents and then
(with TEX 3.0) extended to support other languages
and scripts — at first, because of the restrictions to
8-bit codepages, mostly for languages using Latin
scripts, but later also to non-Latin scripts, such as
Greek or Cyrillic, as well as more diverse scripts.
Initially, the solutions for all such scripts required
complex font setups (as done, e.g., by the CJK pack-
age), special processors to handle transliterations,
and engine extensions to handle, for example, right-
to-left scripts or special input encodings.

The advent of Unicode and the Unicode-aware
engines (X ETEX, LuaTEX and upTEX) led to the
existence of simpler, and much more powerful, setups;
therefore, most scripts are now well supported in
LATEX — perhaps with the exception of scripts that
change the writing direction, since this isn’t part of
the original LATEX design and thus often requires
overwriting many standard commands.

The project currently concentrates on docu-
ments that use Latin scripts or scripts with similar
characteristics. The correct tagging conventions to
use with other types of script are not yet known by
us: e.g., how to deal with direction changes or ruby
characters. When using scripts (such as Latin) that
typically use “ whitespace” to delimit “ words”, tagged
PDF has a requirement that even within the typeset
content stream these words must remain delimited
by an explicit “ whitespace character” [4, §14.8.2.6.2].
This conflicts with the normal practice of TEX type-
setting engines since they do not naturally add such
delimiter characters; however, both pdfTEX and Lua-
TEX have been modified to provide workarounds for
this.7 We also do not yet know to what extent the
many external packages supporting diverse scripts
and languages will need to be adapted for the sup-
port of tagging. To research these topics, help from

7 Engines, such as X ETEX, that do not offer this work-
around can therefore not be used to produce PDF/UA docu-
ments involving scripts that separate words with spaces.

users and developers with in-depth knowledge of such
scripts will be needed.

3 Some TEXnical details
In this final section we take a brief look at two techni-
cal aspects of the project work. Both will be covered
in more depth during the demonstration session at
the conference.

The first subsection explains how to set up a
document (such as this one) so that it will automat-
ically produce tagged PDF. This should, we hope,
enable you to immediately experiment with the addi-
tion of such tags to your own works. If you want to
provide feedback on any issues that you encounter,
or to provide suggestions for improvements, we sug-
gest adding them to the project repository https:
//github.com/latex3/tagging-project, using ei-
ther the issues or the discussions page, as appro-
priate.

This is followed by some background informa-
tion on the experiments we are currently conducting
to automatically include in the PDF MathML rep-
resentations of all the formulas in a document. We
expect this work to become available for public test-
ing during 2024/Q2.

3.1 How to enable tagging
Until recently there was no dedicated location in
LATEX documents to declare settings that affect the
document as a whole. Settings had to be placed
somewhere in the preamble or as class options, or
sometimes even as package options. For some such
settings this was problematic, e.g., setting the PDF
version is only possible if the PDF output file has not
yet been opened, which can be caused by loading
one or another package. For the “ LATEX Tagged PDF
project” [10, p. 17] further metadata about the whole
document (and its processing) needs to be specified,
and again all this data should be placed in a single
well-defined place.

For this reason we introduced (in June 2022)
the command \DocumentMetadata so as to unify all
such settings in one place. This command takes
one argument that should contain a key/value list
specifying all the document metadata for the current
document.8 This should be placed at the very begin-
ning of the document, i.e., before \documentclass;
it will produce an error if found later.

The \DocumentMetadata command also loads
the LATEX PDF management bundle, which provides
various PDF-related commands that are needed to

8 At this point in time only a few keys are accepted, e.g.,
to set the PDF version, the language, a PDF standard and to
load a color profile.

Frank Mittelbach, Ulrike Fischer

https://github.com/latex3/tagging-project
https://github.com/latex3/tagging-project

TUGboat, Volume 0 (9999), No. 0 draft: March 25, 2024 12:13 ?7

 <div>
 <h2>\mml 65</h2>
 <p>\begin{math}\sqrt [\beta]{k}\end{math}</p>
 <p>656E4D3BB4F29D20A1B2CBCB35C35E7E</p>
 <math xmlns="http://www.w3.org/1998/Math/MathML" display="inline">
 <mroot>
 <mi>k</mi>
 <mi>β</mi>
 </mroot>
 </math>
 </div>

Figure 1: Sample entry with MathML data for associated file (AF)

create a tagged PDF. It also accepts the testphase
key, which is of a temporary nature since it is needed
only while new functionality is being introduced for
testing. This key is used to load specific tagging
support: this article, for example, uses the following:
 \DocumentMetadata{
 testphase={phase-III,table},
 pdfversion=2.0,
 pdfstandard=a-4,
 }

which loads the tagging support from phase-III
(basic document elements) and table (newly devel-
oped prototype code for tagging of tabular-like en-
vironments not yet integrated in any test phase). In
addition, the PDF version is set to 2.0 and it specifies
that the PDF should be compliant with the PDF/A-4
standard. This is all that was necessary to produce
the tagged version of this article.9

Eventually, the testphase code will move (once
all components are considered stable) into the LATEX
kernel itself and the testphase key will vanish. Tag-
ging will continue to require a \DocumentMetadata
declaration, but will then use a simple tagged=true
key (name to be decided).

3.2 Inclusion of external MathML

As outlined in section 2.3 on page 905 we are cur-
rently experimenting with a scheme in which exter-
nally provided MathML is embedded in the PDF as
AFs. The MathML for the formulas is provided in an
external file containing one or more \mml commands
with the format shown in figure 1 (i.e., surrounded by
HTML tags so that it can be proofread in a browser).

The first argument to \mml is a label (e.g., a num-
ber) to that uniquely identifies this MathML snippet;
the second argument contains the LATEX source for
the MathML. The third argument is the MD5 hash

9 This paper does not contain any tabular material, thus
table is actually unnecessary for tagging this article. The
setting was added to show how the interface can be used when
new functionality is made available.

of the LATEX source. Its use ensures that the PDF
file will contain only one AF for any formula, even if
a formula is repeated several times: for example, if
the LATEX source document repeatedly uses β,
then each repetition of exactly this formula will ref-
erence the same embedded AF, which means that
the PDF file does not become unnecessarily large.

The final argument contains the corresponding
MathML. In our current experiments the MathML
is generated from the LATEX source by processing it
with tex4ht, with some further processing to add the
MD5 hash values and with some manual corrections
to improve the resulting MathML. One advantage
of using an external file at this stage is to allow the
MathML to be validated before being embedded as
an AF in the PDF. The MathML could potentially be
generated by other TEX to MathML conversion pro-
grams such as latexml or luamml, which would allow
experimentation with different pipelines to construct
associated files containing MathML.

This file is then input at the beginning of the
document and each MathML (with a unique hash
value) is embedded in the PDF as the content stream
of an AF. The LATEX code to produce tagged PDF
then checks, for each math formula in the document,
whether an associated file containing MathML for
this formula has already been added to the PDF,
and, if so, a reference to this MathML associated
file is added to the <Formula> structure element
being constructed. Therefore, if the same math ex-
pression occurs more than once (as a complete for-
mula) then each occurrence will reference this same
MathML AF.

Currently, the generation of the file of MathML
fragments requires some manual editing and explicit
execution of conversion programs. The next step
will be to create scripts that will: run directly in a
LuaTEX compilation; fully automate the generation
of the MathML fragments from the LATEX source;
and validate this output.

Enhancing LATEX to automatically produce tagged and accessible PDF

?8 draft: March 25, 2024 12:13 TUGboat, Volume 0 (9999), No. 0

References
[1] DEIMS 2024. Website of the 5th International

Workshop on Digitization and E-Inclusion
in Mathematics and Science 2024, Nihon
University, Tokyo, Japan, February 2024.
workshop.sciaccess.net/deims2024/.

[2] Olaf Drümmer and Bettina Chang. PDF/UA
in a Nutshell — Accessible documents with
PDF. PDF Association, August 2013.
pdfa.org/resource/pdfua-in-a-nutshell/.

[3] ISO 14289-1:2014; Document management
applications — Electronic document file format
enhancement for accessibility — 1: Use of
ISO 32000-1 (PDF/UA-1), 2nd edition, 2014.
www.iso.org/standard/64599.html.

[4] ISO. ISO 32000-2:2020(en); Document
management — Portable document format —
Part 2: PDF 2.0, 2nd edition, 2020. iso.org/en/
contents/data/standard/07/58/75839.html.

[5] ISO/TS 32005:2023; Document management —
Portable Document Format — PDF 1.7 and 2.0
structure namespace inclusion in ISO 32000-2,
1st edition, 2023. iso.org/en/contents/data/
standard/04/58/45878.html.

[6] ISO/FDIS 14289-2; Document management
applications — Electronic document file format
enhancement for accessibility — Part 2: Use of
ISO 32000-2 (PDF/UA-2), 1st edition, 2024.
www.iso.org/standard/82278.html.

[7] Leslie Lamport. LATEX: A Document Preparation
System: User’s Guide and Reference Manual.
Addison Wesley, 2nd edition, 1994.

[8] LATEX Project Team. Website of the LATEX Project.
latex-project.org/.

[9] Frank Mittelbach and Ulrike Fischer. The LATEX
Companion. Addison-Wesley, Boston, MA, USA,
third edition, 2023.

[10] Frank Mittelbach, Ulrike Fischer, and Chris
Rowley. LATEX Tagged PDF Feasibility Evaluation.
LATEX Project, September 2020. latex-project.
org/publications/indexbyyear/2020/.

[11] PDF Association (PDFA). Website of the PDF
association. pdfa.org/.

[12] Neil Soiffer. Accessible PDF: 2 ̸> 1. In The
4th International Workshop on Digitization and
E-Inclusion in Mathematics and Science 2021.
The DEIMS2021 Organizing Committee, 2021.
workshop.sciaccess.net/deims2021/DEIMS2021_
Proceedings.zip.

⋄ Frank Mittelbach
Mainz, Germany
https://www.latex-project.org

⋄ Ulrike Fischer
Bonn, Germany
https://www.latex-project.org

Frank Mittelbach, Ulrike Fischer

https://workshop.sciaccess.net/deims2024/
https://pdfa.org/resource/pdfua-in-a-nutshell/
https://www.iso.org/standard/64599.html
https://iso.org/en/contents/data/standard/07/58/75839.html
https://iso.org/en/contents/data/standard/07/58/75839.html
https://iso.org/en/contents/data/standard/04/58/45878.html
https://iso.org/en/contents/data/standard/04/58/45878.html
https://www.iso.org/standard/82278.html
https://latex-project.org/
https://latex-project.org/publications/indexbyyear/2020/
https://latex-project.org/publications/indexbyyear/2020/
https://pdfa.org/
https://workshop.sciaccess.net/deims2021/DEIMS2021_Proceedings.zip
https://workshop.sciaccess.net/deims2021/DEIMS2021_Proceedings.zip

	General overview
	The goals of the multi-year "LaTeX Tagged PDF" project
	Current status and achievements
	Ongoing and future project tasks

	Specific aspects of the project work
	The existing tag set support in PDF
	The LaTeX namespace
	Formulas in STEM documents
	Extensions to LaTeX's table handling
	Support for different scripts and languages

	Some TeXnical details
	How to enable tagging
	Inclusion of external MathML

