
TUGboat, Volume 43 (2022), No. 2 167

Using spot colors in LATEX

Ulrike Fischer

Abstract

In this paper I recount some practical experiences
with spot colors we gained while working on the third
edition of The LATEX Companion. I describe what
spot colors are, how to use them for text and (TikZ)
graphics, how to mix them properly, and some of the
pitfalls we found and how we worked around them.

1 Introduction

The LATEX Companion is printed in two base colors:
CMYK black and PANTONE 3005 U, called “blue” in
the document. The second is a so-called spot color,
a special ink in the printer, and not a mix of CMYK
colors.

To prepare the book for print we had to ensure
that the CMYK black, the spotcolor and mixes of
both are used where needed, and we had to remove
or replace all uses of non-black CMYK colors, and
all uses of RGB colors.

Using color is quite normal nowadays and so
color was found in various places added by a variety
of code and packages.

• Various text parts such as headings, side notes
and text in examples are colored.

• Page numbers in the header could be colored.

• Crop marks from the crop package are
colored.

• Various boxes from the tcolorbox package
looked gray but were actually a mix of RGB
colors.

• In one example the use of the Color key of
fontspec led to RGB colors.

• Examples with todo notes and examples with
TikZ pictures contained various colors.

Colors are not used only as pure colors. The
ease of the xcolor syntax means that mixes like
\mouse@body!50!black are found in many places.
So it is not enough to redefine \mouse@body; one
also has to ensure that the mix uses only the in-
tended colors.

Which colors are used on a page can be checked
with various tools. For example Adobe Pro has a tool
where one can deselect color plates like black and
the Pantone ink and so see if the page also contains
other colors.

2 What are spot colors?

A spot color is a color described not in CMYK or RGB
but in a special color model.1 Such a color model
describes the ink or inks to use. The amount of ink
to use is given with the tint, a number between 0
and 1. To also allow devices like a screen or a normal
printer to represent the color the spot color model
contains also a fallback in a generic color model like
CMYK.

The simplest type of a spot color model is a
“separation” which describes the use of a single ink.
Such a separation has a rather simple setup in a PDF.
First one has to add an object with an array which
contains the name of the ink, and a function which
maps a tint to a CMYK color:

6 0 obj % <-- object number
[/Separation/PANTONE#203005#20U

% ^-- name of the ink, PANTONE 3005 U
/DeviceCMYK % <-- fallback CMYK

<< /FunctionType 2
/Domain [0 1]
/C0 [0 0 0 0]
/C1 [1 0.56 0 0]
/N 1

>>
]
endobj

Then one has to declare a name for this ob-
ject. This is done in the page resources in the
/ColorSpace array with a simple mapping between
the chosen name and the object number:

/ColorSpace <<
/color1 6 0 R
% ^-- name to reference the Separation object
...

>>

After the setup the color model can then be
activated with the cs and CS operators and the value
of the tint can be given with the scn and SCN opera-
tors,2 where the lowercase operators set the fill color,
and the uppercase version the stroke color.

name value/tint

/color1 cs 1.0 scn %<-- fill color
/color1 CS 1.0 SCN %<-- stroke color
[(TEXT)] %<-- following text

1 The PDF reference calls color models “color spaces”, but
I will stick mostly to “color model” here.

2 PostScript uses a reversed notation, so typically a value
is before an operator

doi.org/10.47397/tb/43-2/tb134fischer-spotcolor

Using spot colors in LATEX

https://doi.org/10.47397/tb/43-2/tb134fischer-spotcolor

168 TUGboat, Volume 43 (2022), No. 2

3 Methods provided by the LATEX kernel

3.1 Setup of a separation model

A separation color model can be set up with com-
mands included in the L3 programming layer of
LATEX. \color_model_new:nnn is the main com-
mand. It has three arguments, the first is a freely
chosen name for the color model, the second describes
the type of the model — here “Separation” — and the
third is a key/value argument to set the details. As
such a color model has to write to the PDF page
resources, it is required to load the new PDF man-
agement of LATEX [2]. This can be done by using the
\DocumentMetadata command at the begin of the
document.

The color model for our Pantone ink can then
be declared as in the following listing.

% required, loads pdfmanagement:
\DocumentMetadata{}
\documentclass{article}
\ExplSyntaxOn
\color_model_new:nnn { pantone3005 }

{ Separation }
{ name = PANTONE~3005~U , % ink

alternative-model = cmyk , % fallback
alternative-values = {1, 0.56, 0, 0}

}
\ExplSyntaxOff

Colors in this model can then be defined with the
\color_set:nnn command, which has three argu-
ments: a name for the color, the just-defined model,
and a value for the tint.

\ExplSyntaxOn
% define color spotA:

\color_set:nnn{spotA}{pantone3005}{1}
% define color spotB (less tint):

\color_set:nnn{spotB}{pantone3005}{0.5}
\ExplSyntaxOff

These colors can then be used with the command
\color_select:n. To ease use in a document it is
sensible to define an alias which can be used without
having to switch on the expl3 syntax:

\ExplSyntaxOn
% define user command \colorselect:

\cs_set_eq:NN \colorselect \color_select:n
\ExplSyntaxOff

\colorselect{spotA} spot A
% result in the PDF:
%/color1 cs 1.0 scn /color1 CS 1.0 SCN

\colorselect{spotB} spot B
% result in the PDF:
%/color1 cs 0.5 scn /color1 CS 0.5 SCN

3.2 Mixing colors

The color commands of the L3 programming layer
support mixing colors in similar ways to the methods
provided by the xcolor package: You specify integers
describing the percentage surrounded by exclamation
points between defined color names.

Mixing colors defined in the same color model,
e.g., two CMYK colors or two RGB colors or two
different tints of a separation model, is straightfor-
ward and involves only some math. But when mixing
colors of different models one has to decide which is
the target color model and then convert all colors
into this target model to be able to mix them. There
exist various formulas on how to convert RGB into
CMYK or Gray and so normally users don’t have
problems to mix colors defined in these standard
models. Converting a spot color into CMYK is easy
too as it can be done with the fallback function, but
converting an arbitrary CMYK color into a spot color
is not always possible, as it is not clear how to map,
e.g., a red to a tint value of a bluish spot color.

The color command of LATEX L3 programming
layer uses as the target color model of a mix the color
model of the first color3 and then tries its best to
output some color. It will not report an error even
if the models are not compatible. It is thus your
responsibility to check that the mixes do what you
want them to do.

3.2.1 Mixing with white

Mixing a spot color with white normally works fine.
It changes the tint and makes the color light, and
this is the expected outcome in most cases. You need
only pay attention to the order: always start with
the spot color.

\colorselect{spotA!50!white}
%/color1 cs 0.5 scn /color1 CS 0.5 SCN %good

\colorselect{white!50!spotA}
%/color1 cs 1.0 scn /color1 CS 1.0 SCN %wrong

3.2.2 Mixing with black

Mixing with black is more difficult. Black is an ink
of its own and when mixing it into the spot color one
wants to add some of this ink. With the standard
mix, this does not happen. As the following listing
shows, our spotA doesn’t change at all if black is
mixed in, while spotB gets a bit darker as the tint
value increases, but this is also not what we want:
we don’t want more tint but more black ink.

3 It is possible to force another target model, but this is
not discussed here; check the documentation for details.

Ulrike Fischer

TUGboat, Volume 43 (2022), No. 2 169

\colorselect{spotA!50!black}
%/color1 cs 1 scn /color1 CS 1 SCN

\colorselect{spotB!50!black}
%/color1 cs 0.75 scn /color1 CS 0.75 SCN

The right way to mix in black is to set up another
spot color model. This case is not a simple separation
model, but a DeviceN color model which supports
describing ink mixtures.

In the PDF such a DeviceN model is again
a rather simple object. It contains the keyword
/DeviceN, an array which describes the ink compo-
nents,4 and again a function for the CMYK fallback.
Similar to the separation model a name must be de-
clared in the /ColorSpace resource which can then
be used to select the color in the page stream.

44 0 obj
[/DeviceN % the components:

[/PANTONE#203005#20U /Black]
/DeviceCMYK 45 0 R % fallback info
...

]

% name declaration:
/ColorSpace [... /color2 44 0 R ...]

A color in this model can then be called in the
PDF as before, but now the scn/SCN operator expects
two values, one for the Pantone component and the
other for the black ink:

name two values

/color2 cs 0.5 0.5 scn /color2 CS 0.5 0.5 SCN

Such a DeviceN color model can also be set up in
LATEX with the \color_model_new:nnn command.
The type argument then takes the string DeviceN
and in the third argument the names of the compo-
nents are given, here our previously-defined Pantone
color, and black as a predefined ink.

\color_model_new:nnn { pantone+black }
{ DeviceN }
{

names = {pantone3005,black} % components
}

After the DeviceN model has been set up, colors
can be defined in this model. Definitions of “pure”
colors which use only one component are useful, as
such colors can be used to mix colors of this model
on the fly.

4 This can be also three or more components

\color_set:nnn{mix} {pantone+black}{0.5,0.5}
\color_set:nnn{purepantone}{pantone+black}{1,0}
\color_set:nnn{pureblack} {pantone+black}{0,1}

\colorselect{mix}
%/color2 cs 0.5 0.5 scn /color2 CS 0.5 0.5 SCN

\colorselect{purepantone!70!pureblack}
%/color2 cs 0.7 0.3 scn /color2 CS 0.7 0.3 SCN

3.3 Multi-model colors

While defining and using a color like pureblack
solves the problem of mixing in black, it is a bit
of a problem that a new color name has to be used.
Mixtures with black are quite common and one has
to change the name in various places. One option to
avoid this could be to redefine black to always use
the DeviceN model.

Another option is to make use of the capability
of the LATEX color implementation to define a color
in more than one model at once as shown in the next
listing. Such a model will behave like a CMYK color
if used on its own or when mixed with other CMYK
colors, but behave like a DeviceN color when used
in this context.

Again, be aware that the order of the colors in
the color expression matters and that the main color
of the first color is used as the target color model!

\color_set:nnn {black}
{cmyk / pantone+black}
{0,0,0,1 / 0,1}

\colorselect{black}
% cmyk black in the PDF:
% 0 0 0 1 k 0 0 0 1 K

\colorselect{purepantone!50!black}
% Mix as DeviceN:
%/color2 cs 0.5 0.5 scn /color2 CS 0.5 0.5 SCN

\colorselect{black!50!purepantone}
% cmyk mix:
%0.5 0.28 0 0.5 k 0.5 0.28 0 0.5 K

3.4 Fill and stroke color

Up to now we have always set the fill and stroke color
to the same value. This is quite normal for text, but
not for graphics, and so the kernel color code allows
to select the colors independently. Figure 1 shows an
example with the help of the l3draw package. The
two spot colors are faked by two shades of gray.

Using spot colors in LATEX

170 TUGboat, Volume 43 (2022), No. 2

\usepackage{l3draw}
\draw_begin:
\draw_linewidth:n {6pt}
\draw_path_moveto:n { 0cm , 0cm }
\draw_path_lineto:n { 4cm , 0cm }
\draw_path_lineto:n { 4cm , 4cm }
\draw_path_close:
\color_fill:n { spotA }
\color_stroke:n { mix }
\draw_path_use_clear:n

{ stroke,fill }
\draw_end:

/color1 cs 1.0 scn %fill
/color2 CS 0.5 0.5 SCN %stroke

Figure 1: Setting fill and stroke color independently.

3.5 Coloring fonts with fontspec

One of the examples in the book demonstrates the
use of the Color key of the fontspec package [3].
Test compilations showed that regardless of how the
color is defined, the fontspec package inserts an
RGB color into the PDF. When using X ELATEX this
probably cannot be changed, but with LuaLATEX a
solution was implemented. If the color is defined
with the kernel commands, the PDF management is
loaded, and a current luaotfload is used, the model
of the color is honored by fontspec and even spot
colors can be used without problems.

3.6 Summary of spot colors with the
kernel methods

• It is easy to set up the models and the colors.
• It should work with all backends.
• The colors work fine for text.
• One has to pay attention when mixing colors of

different models.
• It is possible to define colors in more than one

model.
• The kernel command can handle fill and stroke

color separately.
• The colors can be used with fontspec (Lua-

LATEX only).
• But: The kernel colors aren’t yet supported by

TikZ [4] (or don’t support TikZ, depending on
one’s point of view).
The last point meant that we had to look for

an alternative for tcolorboxes, todo notes, various
examples with pictures, etc.

4 The alternative: the colorspace package

The colorspace package [1] also offers tools to set
up spot colors. It supports only pdfLATEX and Lua-
LATEX.

Unlike the kernel commands it doesn’t offer sep-
arate commands to use the colors but hooks into the
xcolor package. This allows documents to use the
standard \color command, and it also means that
TikZ is at least in part supported.

The setup of spot colors is quite similar to the
kernel commands, but a bit less verbose. The main
command for a separation model defines the model
and a color with tint directly in one step:

% definition of color spotC:
\definespotcolor{spotC}% color name

{PANTONE 3005 U}% ink
{1,0.56,0,0}% CMYK fallback

% use with standard \color command:
\color{spotC} Spotcolor

% in the PDF:
/&PANTONE#203005#20U cs
/&PANTONE#203005#20U CS
1 sc 1 SC

When mixing colors into a spot color, colorspace
will give an error for every mix of color models it
doesn’t know and will not try, like the LATEX com-
mands, to produce a color nevertheless. This can be
sometimes a blessing as it warns you if a faulty mix
is somewhere, but also means that any code using
such a mix must be adapted; it is not possible to
simply accept a slightly imperfect fallback.

A DeviceN color model can also be defined
with the colorspace package. For this two com-
mands are needed. First you set up the model with
the command \definecolorspace and the keyword
mixed, and then you can define colors as usual with
\definecolor. Here too it makes sense to define
orthogonal, pure colors which can be used in mixes.

Ulrike Fischer

TUGboat, Volume 43 (2022), No. 2 171

\definecolorspace{pantone+black}
{mixed}
{spotC,black}

\definecolor{purepantone}{pantone+black}{1,0}
\definecolor{pureblack}{pantone+black}{0,1}

\color{purepantone!50!pureblack}

colorspace doesn’t support multi-model color
definitions (as it is built on xcolor which doesn’t
support this either), and so to mix a spot color with
black you either have to redefine black or use the
pureblack where needed.

colorspace also doesn’t have commands to set
stroke and fill color independently, and the method
it uses to store the spot colors into the xcolor data
model is not known to TikZ. The support for TikZ is
implemented through a number of patches, is sketchy
and even has a few bugs which we found during the
tests. The most problematic one is that it can “lose”
the color model during some \colorlet operations.
For example if a color is copied through the current
color, which is represented by a period, or copied
with the named keyword, the color model is suddenly
zero. This results in a broken, unusable PDF. As
such operations are very common in TikZ we had to
implement a few patches to get at least syntactically
correct color calls.

\colorlet{.}{spot}
\colorlet{newcolor}{.}
0 cs 0 CS 1 sc 1 SC %broken PDF

\colorlet[named]{test}{spot}
0 cs 0 CS 1 sc 1 SC %broken PDF

4.1 The fill and stroke color problem

As written above, colorspace supports TikZ only
partially. The core of the problem is that xcolor
(likewise color) doesn’t provide interfaces to access
and use fill and stroke colors independently. color
for example stores a color as backend instructions
for both colors:

% fill and stroke together:
{0 0 1 0 k 0 0 1 0 K}

xcolor stores more data, but still keeps the backend
instructions for fill and stroke together:

\xcolor@
{}
% fill and stroke together:
{0 0 1 0 k 0 0 1 0 K}
{cmyk}
{0,0,1,0}

This missing support for fill and stroke colors
means that TikZ and other graphic packages cannot
rely only on the interface provided by xcolor, but
have to implement and use their own backend com-
mands in various places to split out the two parts.
The resulting mix of interface commands and low-
level commands makes it difficult for colorspace (or
for the kernel) to fully support spot colors in TikZ.

5 Special TikZ problems

Beside the general problem of missing support for
fill and stroke colors, there are a few more specific
problems regarding spot colors in TikZ.

5.1 Shadings

Shadings are not simply drawn with some color, but
are special objects defined in the PDF and typically
contain instructions about which color model to use.

By default TikZ only creates RGB shadings. If
you use a shading, you can then see in the PDF lines
where the DeviceRGB points to RGB color model:

/Shading << /Sh <<
/ShadingType 2 /ColorSpace /DeviceRGB ...

Some time ago David Purton also added sup-
port for CMYK shadings, which you get if you force
xcolor to use CMYK everywhere.

/Shading << /Sh <<
/ShadingType 2 /ColorSpace /DeviceCMYK

There is no support for shadings using spot
colors yet, and there was no time to investigate this
use, so the book restricted the use of shadings to
grayscale and CMYK shadings which use only the
black component.

5.2 Patterns

A similar problem was found with patterns. In PDF
format, patterns are also special objects and refer to
a color model. All patterns, colored and uncolored
alike, created by TikZ use hard-coded RGB. To
change this we added an additional declaration to
the /ColorSpace resource and patched an internal
command to force the use of this declaration and
with this, were able to show at least a black and
white pattern:

\pgfutil@addpdfresource@colorspaces
{ /tlc3pattern [/Pattern /DeviceCMYK] }

\def\pgfsys@setpatternuncolored#1#2#3#4{%
\pgfsysprotocol@literal{%

/tlc3pattern cs 0 0 0 1
/pgfpat#1\space scn}}

Using spot colors in LATEX

172 TUGboat, Volume 43 (2022), No. 2

6 Conclusion

With the kernel commands and the colorspace pack-
age two robust options to use spot colors for text and
rules are available. The main work for authors here
is to check color expressions which mix colors, and to
check and perhaps overwrite default color definitions
in packages they use.

The situation for major graphic packages such
as TikZ (PSTricks is probably similar) is not so sat-
isfactory, as they use low-level code to set fill and
stroke colors, making it difficult to add support for
new color models. Also they hard-code in various
places color models like RGB or CMYK. But resolv-
ing these problems should be possible as the kernel
now provides a more powerful color interface, and
the main task is to bring them together.

References

[1] J. Bezos. The Colorspace package. Provides
PDF color spaces. ctan.org/pkg/colorspace/

[2] LATEX Project Team. The Pdfmanagement-
testphase package. ctan.org/pkg/
pdfmanagement-testphase

[3] W. Robertson, LATEX Project Team.
The Fontspec package. Advanced font selection
in X ELATEX and LuaLATEX.
ctan.org/pkg/fontspec

[4] T. Tantau, C. Feuersänger, et al. The PGF
package. Create PostScript and PDF graphics in
TEX. ctan.org/pkg/pgf

⋄ Ulrike Fischer
LATEX Project Team
Bonn
Germany
ulrike.fischer (at)

latex-project.org

Ulrike Fischer

https://ctan.org/pkg/colorspace/
https://ctan.org/pkg/pdfmanagement-testphase
https://ctan.org/pkg/pdfmanagement-testphase
https://ctan.org/pkg/fontspec
https://ctan.org/pkg/pgf

	Introduction
	What are spot colors?
	Methods provided by the LaTeX kernel
	Setup of a separation model
	Mixing colors
	Mixing with white
	Mixing with black

	Multi-model colors
	Fill and stroke color
	Coloring fonts with fontspec
	Summary of spot colors with the kernel methods

	The alternative: the colorspace package
	The fill and stroke color problem

	Special TikZ problems
	Shadings
	Patterns

	Conclusion

