
TUGboat, Volume 43 (2022), No. 3 279

Mapping to individual characters in expl3
Joseph Wright

It is natural to think that separating a word up into
individual characters is an easy operation. It turns
out that for the computer this isn’t really the case.
If we look at a system that natively understands Uni-
code (like XƎTEX or LuaTEX), most of the time one
‘character’ is stored as one codepoint. A codepoint
is a single character entity for a Unicode programme.
For example, if we take the input ‘café’ in a file saved
as UTF-8, it is made up of four codepoints:
U+0063 (LATIN SMALL LETTER C)
U+0061 (LATIN SMALL LETTER A)
U+0066 (LATIN SMALL LETTER F)
U+00E9 (LATIN SMALL LETTER E WITH ACUTE)

So we could, in XƎTEX/LuaTEX, use a simple
mapping to grab one character at a time from this
word and do stuff with it. However, that’s not always
the case. Take for example ‘Spın̈al Tap’: the dotless-i
is a single codepoint, but there is no codepoint for
an umlauted-n. Instead, that is represented by two
codepoints: a normal n and a combining umlaut.
As a user, it’s clear that we’d want to get a single
‘character’ here. So there’s clearly more work to do.

Luckily, this is not just a TEX problem and
the Unicode Consortium have thought about it for
us. They provide a data file and rules that describe
how to divide input into graphemes: ‘user perceived
characters’. So ‘all’ that is needed is to examine the
input using these rules, and to divide it up so that
‘characters’ stay together.

For pdfTEX, there’s an additional wrinkle: it
uses bytes, not codepoints, and so if we use a naïve
TEX mapping, we would divide up any codepoint out-
side the ASCII range into separate bytes: not good.
Luckily, the nature of codepoints is predictable: all
that is needed is to examine the first byte and collect
the right number of further bytes to re-combine into
a valid codepoint.

This work isn’t something the average end user
wants to do. Luckily, they don’t have to as the LATEX
team have worked on this and created a suitable set
of expl3 functions to do it: \text_map_function:nN
and \text_map_inline:nn.

For example, we can do (mapping each character
to printing itself in parentheses):
\ExplSyntaxOn
\text_map_inline:nn

{ Spın̈al ~ Tap } { (#1) }
\ExplSyntaxOff
and get

(S)(p)(ı)(n̈)(a)(l)()(T)(a)(p)
in any TEX engine — assuming we are set up to print
the characters, of course. Getting the right fonts is
an independent issue from parsing the input.

Taking a more ‘serious’ example (and one that
is going to use LuaTEX for font reasons), we might
want to map over Bangla text: I’m going to use
ন্দ্রিকন্দ্র as my example. Our \text_map_inline:nn
function divides up the characters correctly:
(ন্)(দ)্(র)(িক)(ন্)(দ)্(র).

In contrast, the generic expl3 token-list func-
tion \tl_map_inline:nn gives:
(ন)(◌)্(দ)(◌)্(র)(ক)(ি◌)(ন)(◌)্(দ)(◌)্(র),
which is a very odd result. In short: Unicode char-
acters are neither bytes nor tokens.

(If you want to try that demo yourself, you’ll
need a document preamble that can work properly
with Bangla: I’m using
\usepackage{fontspec}
\newfontface\harfbangla

{NotoSansBengali-VariableFont_wdth,wght.ttf}
[Renderer = HarfBuzz, Script = Bengali]

then using \harfbangla in a brace pair around my
demonstrations. Finding a monospaced font that
properly renders Bangla is . . . tricky.)

So, as you can see, mapping to ‘real’ text is easy
with expl3: you just need to know that the tools are
there.

� Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

doi.org/10.47397/tb/43-3/tb135wright-grapheme

Mapping to individual characters in expl3

