
TUGboat, Volume 43 (2022), No. 2 165

Case changing: LATEX reaches Unicode-land

Joseph Wright, LATEX Project Team

1 Introduction

The concept of letters having case is familiar to
speakers of several languages, most obviously those
from Europe using Latin, Greek or Cyrillic scripts.
The ability to convert between upper and lower case,
case changing, is something we might take for granted
both for people and for computer systems. However,
there are subtleties that a careful implementation
needs to take into account.

The Unicode Consortium have defined four dif-
ferent case-related operations that are required to
support the range of applications that come up in
practical use cases:

• Upper casing

• Lower casing

• Title casing

• Case folding

Here, title casing means making the first letter (broad-
ly speaking) upper case, then making the rest of the
text lower case. Case folding means removing case,
and is needed for programmers: often lower casing
is used, but this is not appropriate for true caseless
text comparisons.

Unicode have also identified that case changing
is not a simple fixed operation: depending on the
context around a character, the right outcome can
vary, while different languages can have different
rules. All of this means that the TEX primitives
\lowercase and \uppercase are not suitable for
case changing with the variety of text we might see
today.

2 An expl3 implementation

In 2015, I spoke at the TUG meeting about an expl3
implementation that sought to provide a full set of
Unicode-compliance case changing tools. At that
time, only Unicode engines (X ETEX and LuaTEX)
were supported. However, the code could provide all
of the requirements of Unicode in an approach that
works by expansion: this meant that one could case
change text inside an \edef.

Since that talk, the LATEX team have refined
ideas about the future of LATEX, meaning that the
case changer needed to be extended to work with
pdfTEX. It also needed to be able to carry out
something similar to \protected@edef by expan-
sion. Both of those ideas have been covered over the
past few years.

The expl3 implementation now also incorporates
ideas from David Carlisle’s textcase package. This is

doi.org/10.47397/tb/43-2/tb134wright-case

Case changing: LATEX reaches Unicode-land



166 TUGboat, Volume 43 (2022), No. 2

mainly about being able to exclude content from case
changing: math mode material should never be case
changed, and it’s important to be able to mark indi-
vidual items as unaffected by case operations. Both
of those ideas are relatively easy to do by expansion,
as we need to examine each token anyway.

3 Bring it to LATEX2ε

Since \uppercase and \lowercase have long been
known to have limitations, I am not the first person
to look at supporting the needs of different languages.
There have been a number of clever approaches to
getting the required mappings from implementa-
tions using the TEX primitives. However, the new
code provides a single consistent interface: it can
handle different languages, multiple scripts and so
on without needing to load potentially incompatible
code.

More importantly for the team, we needed to
look again at how active characters are handled in
pdfTEX. The change, to use engine protection for
these active bytes, makes life a lot easier in general
but breaks the previous approaches to case changing
these characters. The expl3 code, in contrast, works
fine with the protected definitions. So this drove the
change.

For users, the long-standing \MakeUppercase

and \MakeLowercase commands stay unchanged:
only the implementation has been adjusted. Title-
casing has some subtleties that mean it needs a
dedicated document command, so now it has one:
\MakeTitlecase. The command \NoCaseChange,
originally defined by textcase, is also now integrated
into the kernel.

For package authors, we have added a com-
mand \AddToNoCaseChangeList to add commands
to the set which are skipped for case changing: things
like \ref and \label are already there. We have
also provided \CaseSwitch, a command that selects
between different outcomes (no change, upper, lower,
title case): this is useful if you have something that
doesn’t expand to text but where you want a different
result inside and outside of case changing. Finally,
we have added \DeclareCaseChangeEquivalent for
situations where a package author needs to entirely
swap the functionality of a command inside a case
changing context.

4 The data: pdfTEX

One minor wrinkle is the data support, particularly
for pdfTEX. For the Unicode engines, we can read
all of the data automatically. For pdfTEX, we don’t
have \lccode and \uccode storage for the whole of
Unicode, only for the 8-bit range. That means that
most of the case changing data has to be stored in
macros. To avoid wasting a lot of memory, only code
points that are typically typeset with 8-bit engines
are included here. That does mean that it’s possible
a few get missed: if there is something to add, please
let us know.

5 Looking ahead

For the Spring 2022 release, we have not included
support for language variation in the document com-
mand interface. But that’s on the agenda, and likely
to appear in the Fall 2022 LATEX2ε update. The most
likely approach there is as an optional argument to
\MakeUppercase, etc.: watch this space.

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

⋄ LATEX Project Team

Joseph Wright, LATEX Project Team


