
40 TUGboat, Volume 43 (2022), No. 1

l3build: The beginner’s guide

Joseph Wright

1 Introduction

For package authors, creating a release is a regular
process, ideal for automation. There are several steps
to creating a release to CTAN, for example ensuring
documentation is updated, structuring an archive
correctly and actually uploading the material.

Some time ago, the LATEX Team extended their
existing basic scripts to create an independent tool,
l3build, which can cover all of those tasks. Most sig-
nificantly, it included features to run comprehensive
tests: this aspect was previously covered for TUG-
boat (2014, 35:3, pp. 287–293). Here, I will give a
more general overview of the tool, looking at how it
can help package authors create releases in a quick
and reliable manner.

2 l3build at the command line

With a modern TEX system, l3build is available as a
command at the command line/terminal. It under-
stands ⟨targets⟩, ⟨options⟩ and ⟨arguments⟩.
l3build ⟨target⟩ [⟨options⟩] [⟨arguments⟩]
The ⟨target⟩ is the task we want l3build to carry out.
The most common ones are:

check Runs one or more automated tests

save Saves the result of one or more tests

doc Typesets documentation

ctan Creates a zip file ready to send to CTAN

upload Sends a zip file to CTAN

install Installs the package in the local texmf tree
(there is also uninstall to reverse this)

The particular ⟨options⟩ which apply depend on
the ⟨target⟩. For example, when running the check
target, l3build will normally finish all of the tests
then report the results. However, particularly when
used with an automated system, one might want the
tests to halt as soon as there is an error. That is
available using the --halt-on-error option, which
is also available as the one-letter version -H.

Some targets require one or more ⟨arguments⟩.
For example, to save test results, you have to give the
name of the test(s). Some targets take an optional
⟨argument⟩: doc is a good example, as you can limit
this to a specific PDF (where your project has several
PDFs, this can be useful). Finally, some targets do
not need arguments at all: install is an example.

3 Configuration: the build.lua file

The configuration of l3build for a project is controlled
by a file called build.lua, which should be present

in the main directory. This is a Lua file, and so
can contain sophisticated programming. However,
for a large number of use cases, the requirements
are simply to set either string variables or tables
of strings. That means that for many projects, the
build.lua file will comprise just a few short lines,
and requires no insight into Lua programming.

Only one line is absolutely required: one to tell
l3build the name of the package. This is specified as
the module string:

module = "mypkg"

By the way, Lua will allow us to mark strings using
either single or double quotes. I favour double ones,
and only use single quotes if the string itself contains
a double quote, but it’s purely personal preference.

The standard settings in l3build are based around
using one or more .dtx files extracted using an .ins

file. They also assume that the documentation is in
the .dtx files. One common structure with larger
packages is to separate out the documentation from
the code, so to have a .tex file to typeset. This can
be covered using

typesetfiles = {"*.tex"}

or if we want to specify only specific files, for example:

typesetfiles =

{

"mypkg-doc.tex",

"mypkg-example-a.tex"

}

Here, we are using a Lua table: these can hold a
variety of data, but all we need to know here is that
we can use a comma-separated list of names inside
braces.

If the project we are working on doesn’t use the
.dtx format, we need to tell l3build the name(s) of
our source files, and that it can skip unpacking:

sourcefiles = {"*.def", "*.sty"}

unpackfiles = {}

Or we might unpack some files that are not on the
standard list, in which case we need to tell l3build to
install them:

installfiles = {"*.def", "*.sty"}

The standard settings for l3build assume that
all of the source files are in the same directory as
the build.lua file. Some authors prefer a more
complex structure. For example, for LATEX itself
there are lots of documentation files, so they are
inside a subdirectory:

docfiledir = "./doc"

You can do the same with your source files, for ex-
ample if you want your main directory to hold just
build.lua (and probably a README.md):

doi.org/10.47397/tb/43-1/tb133wright-l3build

Joseph Wright

TUGboat, Volume 43 (2022), No. 1 41

sourcefiledir = "./source"

The system can cope with more complex layouts,
for example with subdirectories. One new feature
that can help with these more tricky cases is tdsdirs,
which lets l3build simply copy an entire directory ‘as
is’. We tell the system the name of the directory,
and where it matches up with in the TEX installation
tree. For example, if we wanted to use the above
source directory in its entirety, and install it into
the tex tree, we would use

tdsdirs = {source = "tex"}

In this case, all of the files are used.
We will see later that there are settings that

apply to tests, to creating CTAN releases, and for
more advanced functions.

4 Setting up simple tests

The core mechanism for creating tests in l3build
uses the fact that documents can write to the .log
and extract information to verify that our code has
worked. That can broadly be done in two ways: de-
liberately writing information to the .log, or using
\showoutput or similar to place the result of some
typesetting operation into the file.

What is also needed is a way to mark those parts
of the .log that are of interest, and to normalise
system-dependent information, such as paths, to
make the results as portable as possible. Some of
this is carried out by l3build itself, with the macro
parts of the process implemented in the source file
regression-test.tex. All the commands provided
by the latter have all-uppercase names, to minimise
the chance of clashes with normal commands.

For the case where it is possible to save a result
in a macro, counter or similar, the easiest approach
to testing is to write these using \TYPEOUT.

\input{regression-test}

\documentclass{article}

\usepackage{mypkg} % The package to test

\START

\TEST{A first test}{%

\mypkfunctionA{input-tokens}%

\outputmacro

\TYPEOUT{\outputmacro}

}

\TEST{A second test}{%

\mypkfunctionB

{input-tokens}%

{more-input-tokens}%

\outputmacro

\TYPEOUT{\outputmacro}

}

\END

Nothing before \START will be recorded, which makes
it a good way to skip the preamble. We can skip
small parts of the input using the pair \OMIT and
\TIMO. The run here is stopped using \END as we
are not interested in the typesetting of pages: this
basically kills the TEX run and saves a bit of time.

The alternative approach is to look at TEX’s
output tracing, either using a box or \showoutput.

\input{regression-test}

\documentclass{article}

\usepackage{mypkg} % The package to test

\showoutput

\begin{document}

\START

% Assume the commands produce typeset output

\mypkfunctionA{input-tokens}

\mypkfunctionB

{input-tokens}

{more-input-tokens}

\newpage

\OMIT

\end{document}

Here, we can use \OMIT to skip over the informa-
tion at the end of a TEX run: here we have used
\end{document} as this allows the LATEX .aux file,
etc., to be created. If you are relying on information
passed using this mechanism, you might need to set

checkruns = 2

or some higher value.
The input files for tests, .lvt files, should be

saved inside a directory testfiles within the project
directory. The test results are then saved using

l3build save ⟨names⟩
where the ⟨names⟩ are the file names of the test
inputs, but with the extension omitted.

With the standard settings, tests are run using
pdfTEX, X ETEX and LuaTEX, and using the LATEX
format. Using formats other than LATEX is outside
of the scope of this short guide, but running with
multiple engines is a common requirement. To save
an engine-specific test result, we use the --engine

(or -e) option

l3build save -e⟨engine1 ⟩,⟨engine2 ⟩ ⟨names⟩
This will be needed most commonly when testing
typeset output: there are fundamental differences
between the three common engines. When running

l3build check

the system will use engine-specific results if they
exist, and otherwise will assume that they all follow
the ‘standard’ engine: this is normally pdfTEX.

l3build: The beginner’s guide

42 TUGboat, Volume 43 (2022), No. 1

If you would rather just use one engine for tests,
you can set

checkengines = {"pdftex"}

in your build.lua file. For Unicode-only work, in
contrast, you might want

checkengines = {"xetex", "luatex"}

where the first entry given will then be the ‘standard’
engine.

5 Customising typesetting

There is only one command used for typesetting
documentation: it can be set using the typesetexe
setting. This is typically set to pdflatex: notice
that this is a typesetting command not an engine.

As for tests, the number of typesetting runs can
be set, using the typesetruns setting. More complex
adjustment of the typesetting run is possible: l3build
provides a set of basic operation functions (such as
‘run Biber’), and these can be combined to make
defined workflows. This aspect requires some Lua
programming and is therefore beyond the scope of
this short guide.

6 Building CTAN releases

The standard settings will collect up all sources and
typeset files, plus any README.md, and create a zip
file to send to CTAN. You can also pack a TDS-ready
zip: this feature is activated using the setting

packtdszip = true

Uploading to CTAN requires some settings to
‘fill out the form’ for administration. As an example,
l3build itself has the configuration shown in Figure 1.
The [[...]] syntax creates a multi-line string in
Lua.

The information in uploadconfig is used by
the upload target, which needs two key pieces of
information: an email address and a release string.
This will be requested by l3build if not given at the
command line

l3build upload --email ⟨email⟩ ⟨tag⟩
You can check that your upload is valid, without

actually sending it, by using the --dry-run option
on the command line. (This option also works for
the install target.)

7 Advanced features

Using a mixture of Lua programming and additional
variables, a wide range of effects can be achieved.
These include

• Supporting plain TEX and ConTEXt testing

• Automatically updating version strings and copy-
right in sources using the tag target

• Using multiple setups to run tests for different
aspects of functionality

• Placing installed files in different parts of the
TEX tree

• Testing the PDFs produced by typesetting

Of these, the ability to automatically tag files is prob-
ably of the broadest interest. However, as sources
files are extremely varied, this does require some Lua
programming; that takes us beyond the scope of this
short article. For details of this and the other more
advanced features, please consult the l3build manual.

8 Example build.lua files

8.1 A basic project: one .dtx and one .ins

The most basic setup, following the model used by
the LATEX Team, is to have your code and document-
ation in a single .dtx file, which has a matching .ins
file and (probably) a README.md, all in the same dir-
ectory. For this, the build.lua file can be a single
line:

module = "mypkg"

That’s it: l3build will handle everything else based
on its standard settings.

8.2 A ‘self-extracting’ .dtx file

Some people like to combine their .ins file into their
.dtx; that is easy to support.1

module = "mypkg"

unpackfiles {"*.dtx"}

8.3 Documentation separate from sources

With larger projects, you may want your documenta-
tion in one or more .tex files separate from the code.
Assuming you also want to typeset your code, you’d
go with

module = "mypkg"

typesetfiles {"*.dtx", "*.tex"}

8.4 Not using DocStrip, and non-standard
file types

Not everyone wants to use DocStrip, and while it
won’t hurt to leave unpacking enabled, we might well
want to skip it. At the same time, we might have
some non-standard file types: here some .def files
and one .lua file.

module = "mypkg"

installfiles =

{"*.def", "mypkg.lua", "*.sty"}

unpackfiles = {}

1 I don’t recommend this structure. You are unlikely to
need to send your source by email to someone, and the only
real benefit of a single-source approach is for that type of
‘classical’ distribution.

Joseph Wright

TUGboat, Volume 43 (2022), No. 1 43

uploadconfig = {

author = "The LaTeX Team",

license = "lppl1.3c",

summary = "A testing and building system for (La)TeX",

topic = {"macro-supp", "package-devel"},

ctanPath = "/macros/latex/contrib/l3build",

repository = "https://github.com/latex3/l3build/",

bugtracker = "https://github.com/latex3/l3build/issues",

update = true,

description = [[

The build system supports testing and building

(La)TeX code, on Linux, macOS, and Windows

systems. The package offers:

* A unit testing system for (La)TeX code;

* A system for typesetting package documentation; and

* An automated process for creating CTAN releases.

]]

}

Figure 1: uploadconfig for l3build itself

8.5 Source files in different directories

Some developers like to have their sources in different
directories inside their project. This likely goes with
having separate files for typesetting.

module = "mypkg"

docfiledir = "doc"

sourcefiledir = "source"

typesetfiles = {"*.tex"}

9 Summary of key settings

There are a large number of more specialised settings
available in l3build. Table 1 summarises some of the
most commonly-used ones. There is a full list in the
package documentation.

⋄ Joseph Wright
Northampton, United Kingdom
joseph dot wright (at)

morningstar2.co.uk

Variable Description

module Name of the package

installfiles List of files to place in the texmf
tree

sourcefiles List of sources/pre-extracted files
typesetfiles List of sources to typeset
unpackfiles List of .ins files to DocStrip

docfiledir Location of typeset sources
sourcefiledir Location of code sources
tdsdirs Table of locations to install directly

checkengines List of engines for test runs
checkruns Number of (LA)TEX runs for testing

typesetexe Program to typeset documentation
typesetruns Number of (LA)TEX runs for

typesetting

packtdsdir Switch to build TDS-style zip file
uploadconfig Table of information for uploading

Table 1: Summary of key settings

l3build: The beginner’s guide

