
LATEX Tagged PDF
Feasibility Evaluation
LATEX Project
Frank Mittelbach, Ulrike Fischer, Chris Rowley

 Written: December, 2019
 Minor updates: September, 2020
 Auto-tagged version by LATEX: April 2022

Contents
1 Introduction 2

1.1 Why LATEX? . 2
1.2 Why this software development project? . 3

1.2.1 Some history . 3
1.3 Scope of the project . 4
1.4 Deliverables in this document . 4

2 Project Overview 5
2.1 General Prerequisite Tasks . 5

2.1.1 Change Strategy . 5
2.1.2 Improved test and development environment 6

2.2 General LATEX Extension Tasks . 6
2.2.1 Extend LATEX core — PDF text string support 6
2.2.2 Extend LATEX core — Cross-referencing generalization 7
2.2.3 Extend LATEX core — Hyperlinking support 8
2.2.4 Extend LATEX core — Outlines (bookmark) support 10
2.2.5 Extend LATEX core — Hook and configuration management 10
2.2.6 Extend LATEX core — PDF object management 11

2.3 Structured PDF Tasks . 13
2.3.1 Core tagging support . 13
2.3.2 Tagging paragraphs . 15
2.3.3 Tagging basic elements . 16
2.3.4 Metadata management . 17
2.3.5 Alternate text support . 19
2.3.6 Associated file support . 20
2.3.7 Tagging table structures . 21
2.3.8 Tagging mathematics . 23
2.3.9 Standards compliance: PDF/UA, PDF/X, PDF/A and possibly others . 24

2.4 Aggregation tasks . 25
2.4.1 User and developer acceptance testing 25
2.4.2 Best practice guides and other publications 27
2.4.3 Coordination of the update of important external packages 28

2.5 Necessary Research Work . 30
2.5.1 Research — Tagging mathematics . 30
2.5.2 Research — Tagging tables . 31
2.5.3 Research — Using attributes . 31

1

3 Project Timeline 32
3.1 Phase I — Prepare the ground . 32

3.1.1 Tasks of phase I . 32
3.1.2 Milestones of phase I . 34

3.2 Phase II — Provide tagging of simple documents 34
3.2.1 Tasks of phase II . 34
3.2.2 Milestones of phase II . 35

3.3 Phase III — Remove the workarounds needed for tagging 35
3.3.1 Tasks of phase III . 35
3.3.2 Milestones of phase III . 36

3.4 Phase IV — Make basic tagging and hyperlinking available 36
3.4.1 Tasks of phase IV . 36
3.4.2 Milestones of phase IV . 37

3.5 Phase V — Provide extended tagging capabilities 37
3.5.1 Tasks of phase V . 37
3.5.2 Milestones of phase V . 38

3.6 Phase VI — Handle standards . 38
3.6.1 Tasks of phase VI . 38
3.6.2 Milestones of phase VI . 39

4 Resource assumptions and requirements 39

References 40

1 Introduction
The project described in this Evaluation Document is for the creation of an extended version
of the LATEX Document Preparation System [17, 18, 19, 22] that fully supports the production
of ‘Tagged PDF’ [2, 15] documents in order to support different PDF standards such as
PDF/UA.

One of the major advantages of such PDF documents is the superior support they offer to
various types of assistive technology now available under the general heading of ‘Accessibility’.
Also of contemporary importance to this aim of the project are the many legal and regulatory
requirements being placed on publishers and suppliers of documents to provide accessible
documents, with in some cases specific requirements on the contents and coding of any PDF
document that is provided. Other benefits of tagging are improvements in functionality, such
as sophisticated text selection (for copy-and-paste) and data extraction.

1.1 Why LATEX?
The importance and relevance of the LATEX System to the production of tagged PDF derives
from the most basic property of a LATEX document: that it is a tagged document. More precisely,
a LATEX file is a ‘ free-form’ text file that describes the structure of a document through markup
tags, and represents its textual content as unformatted character data. A LATEX file does
not need to contain any explicit formatting information (no font information nor layout
information). All such non-structural information that is needed to produce a formatted and
typeset document (typically a PDF file) is normally stored separately from the document
itself, in LATEX package files and class files. Because these files are not part of a document,
each can easily be used with different documents.1 Also, a document designer or author can
easily change the style of a document by selecting the class and package files to use. This
formatting information in the class and package files is then accessed by LATEX’s formatter

1LATEX allows the inclusion of explicit formatting directives in addition to the structural information, but this is
not a required part of the document source.

2

and typesetting engine, whose function is to create fully formatted and expertly typeset
output that can be printed on paper or (more frequently nowadays) consumed via a screen
using a viewer application such as Acrobat Reader.

Thus a LATEX document, since it is already ‘ fully tagged/structured’, makes the very
best starting point for the relatively straightforward production of a tagged PDF document.
Adding to this the existence, world-wide, of a large number of PDF documents that were
created by formatting a LATEX document, results in a solid basis for a system with the potential
of creating a large collection of ‘ ready-tagged’ PDF documents.

1.2 Why this software development project?
A good question! Since we already have a structured/tagged form of a document in its LATEX
file, and we have excellent existing software for creating from this a formatted document
as a PDF file, the only missing ingredient appears to be a simple tool to “ move the tagging
structure from one format to the other”, with the LATEX structural tagging being transformed
smoothly into the PDF tagging structures — “ task completed!”.

Of course, when dealing with software (two systems in this case) there are bound to
be some problem areas within such a task. In the case of LATEX and PDF, these problems
are non-trivial to solve. This is due to significant properties of the two systems that make
the design and implementation of such a tool more complex and demanding than might be
suggested by the superficial analysis outlined above.

The two most important reasons for this complexity derive from the histories of the two
systems. They can be summarized thus:

• PDF uses ‘ content streams’ and ‘ page objects’ to represent the formatted document but
these provide no natural way to represent the logical structure of the document. Thus
the tagging structure and attributes have to be added (in the structure tree) without
interfering with the page structure; then these must be augmented by a sophisticated
system of pointers from each structure element to a page, and to marked content within
the content stream of that page.

• LATEX currently has no core support for carrying the attributed structure information
into the PDF form of the document, or for associating formatted textual content with
this structure.

It follows from these historical facts that our project must be underpinned by major
changes to many of the fundamental document processing models and algorithms in the
core of LATEX. This substantial preliminary work will lead directly into the central concerns
of the project:

• Extending the main functionality of LATEX to preserve the attributed structural informa-
tion contained in a document’s source LATEX file;

• Using this information to enhance the output PDF with the major requirements of
tagged PDF, including the tree of attributed structure elements and the associations of
these elements with marked content streams.

The Project Overview contains further details of the tasks involved.

1.2.1 Some history

This current lack of functionality can be traced directly back to the origins of both LATEX itself
and the underlying typesetting engines on which it is built. Both are, even now, essentially
the same as when they were designed and first implemented over 30 years ago. Back then
their sole purpose was the output of high-quality ink-on-paper, and so they did not need
to retain the abstract structural information from the input files: there simply was no use

3

for it. Recall also that, at that time, for software to be widely usable it had to be small and
efficient (i.e., the code had to be extremely compact and as concise as possible), therefore the
functionality was typically stripped to the minimum of essentials.

Although there have been many adaptations of the LATEX system to some aspects of
onscreen documents (often provided by third-party add-ons), the document processing
model and the core code have not changed significantly from those original systems. The LATEX
system has never had a major reimplementation nor any additions to its original document
processing models. Thus it is, fundamentally, still confined to the basic functions, document
layout and typesetting of text, for traditional printing, on paper. The underlying typesetting
model in current LATEX also lacks, for example, any concept of a graphics state and it has no
graphical objects beyond rules; it is also missing many of the graphical transformations such
as rotations.

Even when it is used with a typesetting engine that provides a specialized PDF backend,
such as the pdfTEX or the LuaTEX engines, current LATEX is not well suited to supporting the
creation and full integration of the diverse range of elements (structure, text, graphics, etc.)
that can be captured in a modern, fully-featured PDF document. Many of the tasks in the
early phases of the project are therefore related to the completion of the following items of
preliminary work that are needed to modernize the document processing functionality of
the LATEX kernel.

• Extension and refactoring of the handling of structural elements (commands and
environments).

• Refactoring of the page-makeup machine to better support the creation of the necessary
PDF objects and data.

• Provision of a new module for greatly improved handling of cross-references.

• Improvements to the processing of hyperlinks and outlines.

These preliminary tasks comprise about 25–30% of the work detailed in this document.

1.3 Scope of the project
This quote is adapted from a review of PDF 2.0:

Today, PDF files may contain a variety of content besides flat text and graphics:
these include logical structuring elements, interactive elements such as anno-
tations and form-fields, layers, rich media (including video content) and three
dimensional objects using U3D or PRC, and various other data formats.

We do not claim that this project will directly result in LATEX being immediately used to
produce the whole of this cornucopia of PDF content. It concentrates on the implementation of
tagged PDF conforming to standards like PDF/UA, [11], PDF/A‑2a [13] and PDF/A-3a [14].

1.4 Deliverables in this document
This document contains the following deliverables of this feasibility study (they are as defined
in the Statement of Work):

• An engineering plan (overview) for getting LATEX and the most common packages to
output Tagged PDF.

• Breakdown of the key actions required to implement the engineering plan.

• Identification of the research work to be carried out as part of the engineering plan.

• Milestones identified for various phases of the plan.

4

2 Project Overview
This section provides details of all the engineering and research tasks that need to be carried
out as part of this project. This includes specifying all necessary subtasks, documenting the
relationships and dependencies between tasks, and listing the deliverables for each task. A
rough project timeline is then presented in section 3, split into different phases with time
estimates and the milestones to be reached at the end of each phase.

A more precise timeline depends partly on the availibility of sufficient funding. At the
time of writing, funding for the initial phases of the project is available and we hope to attract
further project sponsors to ensure that the project will finish successfully and in a reasonable
time frame.

The research tasks listed in section 2.5 are to be carried out in parallel with the engineering
tasks. Note that the new engineering tasks that will arise from these research activities are
not included in the timeline presented here.

2.1 General Prerequisite Tasks
2.1.1 Change Strategy

A change strategy for incorporating the changes needed for tagging and accessibility into the
LATEX kernel and major packages.

Description Introducing changes to the LATEX kernel or to core LATEX packages is a difficult
undertaking as it needs to be done without, if at all possible, breaking older documents and
existing packages. In practice, any change to the core LATEX software has the potential to
break existing workflows, packages and documents. Thus these can adversely affect many
parts of the LATEX user base: both the ordinary users such as authors, editors, etc., and also
the developers of classes, packages, etc.

The project goal of providing fully automated tagging support from within LATEX requires
extensive changes to the inner workings of LATEX, so it is unlikely that such breakages can be
completely avoided. It is therefore necessary to develop processes and mechanisms to

• identify such breakages;

• provide solutions that ameliorate or avoid disruptions to any part of the LATEX user
base.

This task is a necessary and important prerequisite of the overall project as LATEX is viewed
by its large community as a stable system with good backwards compatibility. Thus major
disruptions will cause extremely bad publicity with the result that the adoption rate for the
extensions provided by this project may be too low, and hence that the project will fail.

Once defined these actions need to be implemented as part of all the other topics/goals.

Subtasks —none for this task—

Dependencies and prerequisites This task is a predecessor of all other technical tasks that
involve changing the code base of LATEX. The results of this task (the defined processes and
necessary actions) need to be implemented as part of all the other technical tasks.

Deliverables

• A document describing the change strategy, i.e., processes, actions and checkpoints.

• Change strategy actions to be added to all other tasks.

5

2.1.2 Improved test and development environment

An improved development and testing environment for LATEX to address the specific require-
ments of developing and testing code related to PDF features such as structure.

Description The LATEX Project already has processes in place that allow for automatic
testing of the LATEX code and its dependencies (regression, unit and feature tests). However,
up to now these processes have tested only the direct results produced by the underlying
engine, e.g., computational results, typesetting results (object placements, etc.) The correct
production of a final PDF document is not currently part of the testing process because this
was considered to be an automatic conversion that is always correctly done by the typesetting
engine or by a post-processor.

This approach has up to now been adequate, given the current scope of LATEX document
processing: LATEX today being concerned only with the processing of user input and with
typesetting the document on (paper) pages according to the design specifications, with the
final PDF being simply a representation of the spatial relationships between typeset elements
(and nothing more).

When extending the scope of LATEX to the automatic production of structured PDF, it
will become important to have mechanisms and tools that automatically check whether a
generated PDF conforms to its specifications and whether the structures specified in the input
source have been correctly transformed into the corresponding PDF structure elements.

The purpose of this task is therefore to get or create tools that allow automated testing of
PDF features, including structures, as part of a regression test suite. Also, it will develop/up-
date the processes and scripts used by LATEX developers to verify automatically the correct
behavior of new code related to tagging and accessibility.

Subtasks

1. Identify command-line and other tools for automated testing, and develop appropriate
processes and methods for their use.

2. Extend the LATEX testing environment (l3build [16]) to support the testing of all PDF
features, such as structure.

3. Provide sufficient test coverage in all tasks that involve coding.

Dependencies and prerequisites Each coding task needs to have a deliverable of ensuring
that sufficient test coverage is provided. These are the coding tasks: 2.2.1–2.2.6 and 2.3.1–2.3.9.

Deliverables

• An extended l3build development and test environment that covers the testing of PDF
features, including structure, etc.

• Documentation that describes how the new test processes should be applied.

2.2 General LATEX Extension Tasks
2.2.1 Extend LATEX core — PDF text string support

Robust tools that convert LATEX input into valid PDF text strings.

6

Description User input in LATEX documents is not always in a format that allows its direct
inclusion in PDF text strings, or its use as a PDF name, as needed for alternate text, bookmarks,
destination names, etc.

It is therefore necessary to provide a standard solution that reliably converts any user
data (including maybe a simple formula) into the format and encoding required in PDF text
string and name objects.

Subtasks

1. Review existing (incompatible) ad hoc solutions to convert user input into a PDF text
string or a PDF name, and develop a standard approach that can be used by the LATEX
kernel and external packages.

2. Add this standard solution to the LATEX kernel and arrange for it to replace any ad hoc
solutions in the core packages.

3. Replace any ad hoc solutions in (the small set of) external packages with the new
standard.

4. Document the use of the interfaces in package code.

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• The change strategy being defined (2.1.1).

Deliverables

• Standardized LATEX code for conversion of user data to a PDF text string or a PDF name,
replacing existing ad hoc solutions (subtask 1).

• Sufficient test coverage of the interface implementation of this new standard in the
LATEX kernel and core packages (subtask 2).

• Ad hoc solutions in packages replaced by this new standard (subtask 3).

• Documentation of the interfaces of the new standard, for package developers (sub-
task 4).

2.2.2 Extend LATEX core — Cross-referencing generalization

A standard method to collect data generated by one part of the document processing for
reuse in other parts.

Description Cross-references in documents use data gathered in one part, such as a section
or page number, to refer to that section or that page in a different part of the document, or
even across different LATEX documents.

Due to its limited scope (of producing only printed documents) current LATEX has a very
rigid model for this: for most cross-references it consistently passes only a ‘ current reference
number’ and a page number; for table of contents entries it always passes the ‘ type’ of the
section or object, its (textual) title or caption, and its page number.

For the production of structured PDF output this model is inadequate; it needs to be
replaced by a more flexible model using property lists. This will extend the coverage of
both the properties (keys for the data that is passed) and also the data (values) that can be
collected and passed around. It will also need be usable with a wider range of document
elements.

7

There already exist some ad hoc attempts to augment the current standard solution for
specific purposes, but these are mutually incompatible and they also do not offer a level of
abstraction suited to the necessary extensions.

Subtasks

1. Replace LATEX’s current cross-referencing mechanism with a more general version that
supports the collection and passing of a wide variety of data for a range of elements
and properties.

2. Add this solution to the LATEX kernel and use it in appropriate places to pass the
additional data needed for the generation of structured PDF.

3. Replace the ad hoc solutions (a small set) by this new version.

4. Document the use of this new (generalized) cross-referencing version and its interfaces
in package code.

Dependencies and prerequisites

• The change strategy being defined (2.1.1).

• A suitable test environment (2.1.2).

Deliverables

• A generalized cross-reference model and implementation that supports the generation
of structured PDF and extends the existing ad hoc solutions (subtask 1).

• Test coverage of the interface implementation and its use in the LATEX kernel (subtask 2).

• Updates/extensions to existing ad hoc solutions, using this new version (subtask 3).

• Documentation of the interfaces of the new version, for package developers (subtask 4).

2.2.3 Extend LATEX core — Hyperlinking support

Hyperlinking capabilities, including setting up destinations to which hyperlinks or outlines
can point.

Description The document outline and hyperlinks, both within documents and to external
resources, are currently not provided by the LATEX kernel itself, so they must be created
through external packages such as hyperref [9] which need to be explicitly loaded by
documents. There is a major problem with this current setup: every such external package
must patch a large amount of code in order to add the necessary structures for the creation
of links, outlines, etc. An important example is the specification of PDF destinations (which
are called anchors in the LATEX world), areas on a page to be used as link targets.

These patches cover both internal LATEX kernel code and also code from many other
packages, both core and external. Both the number and the varied locations of the necessary
redefinitions mean that currently this patching is not very robust and can fail in several
scenarios, either completely or in subtle ways: for example, by pointing to the wrong position
in a document.

As outlines and links are an integral part of well-structured PDFs, it is important to
replace this current variety of ad hoc alterations (to both kernel and package code) needed to
support outlines and links. The replacement will be a set of well-structured kernel interfaces
that provide reliable support for all the necessary operations including the specification of
destinations.

8

The document-level interfaces provided by hyperref and associated packages are well
established (by widespread use); they need no, or only little, adjustment as they can (with a
few exceptions) be added unaltered to the LATEX kernel. The document-level interfaces for
explicitly adding outlines may need adjustments; these are handled in task 2.2.4.

Subtasks

1. Review existing ad hoc solutions to provide destinations for both outlines and hyper-
linking. Develop a standard approach that can be used by the LATEX kernel and by
external packages.

2. Add the new standard programming-layer interface for destinations to the LATEX kernel.

3. Augment all relevant standard document elements to include named destinations that
are correctly positioned.

4. Add the hyperref document interfaces (as appropriate) to the LATEX kernel and then
retire the package itself.

5. Document how to use the user interfaces. Most of that documentation already exists as
part of the hyperref documentation, so only minor corrections and integration into
the core LATEX documentation is needed.

6. Document how to use the programming-layer interface to add destinations to elements
supported by commands and environments in external packages.
Compile a list of all important external packages that should be updated to integrate
this destination support. This list should include a rough time estimate for the work
necessary and define priorities for scheduling the work if it has to be undertaken as
part of the project (unfortunately, not all packages in the LATEX world have active
maintainers—even if the package is widely used).

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• LATEX kernel support for PDF text string conversion (2.2.1).

• LATEX kernel support for a generalized cross-reference method (2.2.2).

• Subtasks 2, 3, 4 and 6 depend on the change strategy (task 2.1.1).

Deliverables

• The standardized programming-layer interface for setting destinations (subtask 1).

• An augmented kernel that supports destinations for all relevant document-level ele-
ments (subtask 2 and 3).

• An augmented kernel that supports all user-level interfaces for hyperlinking (subtasks 4
and 5).

• Test coverage of the interface implementation and the kernel augmentation with desti-
nations and the hyperref user interface (subtasks 2, 3 and 4).

• Documentation covering how to use the programming-layer interface in packages
(subtask 6).

• An evaluation of which important external packages should be updated to use the
programming-layer interfaces, including rough time and resource requirements for use
in task 2.4.3 (subtask 6).

9

2.2.4 Extend LATEX core — Outlines (bookmark) support

The document outline and its customization.

Description The document outline shares a lot of the underlying functionality with links,
such as the use of destinations (task 2.2.3). However, the document-level interfaces and the
customization possibilities are different, therefore outline production has been given its own
task.

Subtasks

1. Review existing ad hoc solutions to provide a document outline. Design and implement
a standard solution for use in the LATEX kernel and external packages.

2. Add this solution to the LATEX kernel and use these to replace the ad hoc solutions.
Retire existing packages.

3. Document how to produce the document outline automatically. Document the interface
for customizing this mechanism, and the interface for manually adding outline items.

Dependencies and prerequisites

• LATEX kernel support for PDF text string conversion (2.2.1).

• LATEX kernel support for generalized cross-references (2.2.2).

• LATEX kernel support for destinations (2.2.3).

Deliverables

• Standard interface for generating the document outline (subtask 1).

• Kernel augmented to support generating outline items for all relevant document-level
elements (subtask 2).

• Kernel augmented with interface for customizing the production of outline items
(subtask 2).

• Test coverage of the interface and implementation, of the augmented kernel, and of the
user interface for customizing the document outline (subtasks 1 and 2).

• Documentation of how to make use of the package interfaces that automatically produce
outline items, and of how to manually set up outline items in documents. (subtask 3).

2.2.5 Extend LATEX core — Hook and configuration management

A standard set of hooks in the LATEX document processor. Well-managed hooks enable code
for extensions and configuration to be executed in a reliable way.

Description The LATEX kernel needs well-defined places where code can be reliably added
by different packages without generating conflicts; these are called hooks. In particular, such
hooks are needed at the beginning and the end of processing the contents of a page, just
before it is used to create the content stream. Also, at the end of the document it is necessary
to output some PDF objects such as the /ParentTree.

When LATEX 2ε was designed and implemented in the eighties and nineties, computer
memory was a very limited resource and, in order to fit into the available space, many
useful locations for code extension (hooks) were omitted. It is therefore necessary to change

10

the LATEX kernel software by providing the necessary hooks and configuration points; this
will require an interface for managing the system, enabling kernel software and extension
packages to add, in a controlled way without conflicts, code in such places.

The purpose of this task is to provide this important basic infrastructure so that code can
be reliably added to produce structured PDF.

Subtasks

1. Augment the existing kernel by adding hooks and configuration points in places where
code needs to be altered for the output of structured PDF.

2. Design and implement a programming-layer interface to manage adding code to hooks
and configuration points.

3. Add this interface to the LATEX kernel, so that it can be used in other tasks (e.g., 2.2.6,
2.3.7, etc.) and by external packages that need to execute code at specific points during
the document processing.

4. Document how to use the programming-layer interface to hooks in external packages.
Compile a list of important packages that should be updated to use this new program-
ming-layer interface. This list should include rough time and resource requirement
estimates for the necessary work.

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• Subtasks 1, 3 and 4 depend on the change strategy (task 2.1.1).

• This task is a prerequisite for tasks 2.2.6 and 2.3.1.

Deliverables

• Kernel augmented to contain hooks and configuration points, at least for the support
of structured PDF (subtask 1).

• Standardized programming-layer interface for adding code to hooks and configuration
points (subtask 2).

• Test coverage of the interface implementation, the kernel augmentation and the neces-
sary hooks (subtasks 1 and 3).

• Documentation of the programming-layer interface in packages (subtask 4).

• An evaluation of which important external packages should be updated to use the
programming-layer interfaces, including rough time and resource requirements, for
use in task 2.4.3 (subtask 4).

2.2.6 Extend LATEX core — PDF object management

LATEX interfaces for managed and controlled access (by both the core and external packages)
to the creation, writing out and manipulation of PDF objects. Examples of such objects are
the page resources, the catalog, annotations, XObjects, etc.

11

Description The current LATEX kernel can be described as basically unaware of PDF; by
which we mean that, although the majority of formatted documents created with LATEX
are PDFs, LATEX doesn’t provide any commands or interfaces for the direct creation of PDF
objects, or for writing them out to the PDF file. There is therefore currently no support for
creating annotations or for adding entries to the page resources, the catalog or other major
dictionaries.

Instead, all aspects of PDF generation are currently delegated by LATEX to the underlying
TEX engine or to a post-processor in the workflow. In this latter case, LATEX generates a
device-independent description of each page (without structural information) from which
the PDF is then generated.

However, the different underlying TEX engines do all offer commands to directly write
and manipulate many PDF structures at a very detailed level (or they support the passing of
such information to post-processors to do this); but almost none of this functionality is used
by any of the core LATEX software, which currently restricts itself to the management of the
print workflow, ignoring all other aspects of PDF production.

There is some support in add-on packages for the creation of the following PDF features:
links, annotations, optional content, embedding of files, some special color effects, etc. These
packages use the engine-level commands in different ad hoc ways without knowledge about
how other packages are attempting to write to or manipulate the same PDF structures. As a
result, there are conflicts between packages (and partial overwrites) which can, depending
on the situation, lead to broken PDFs.

Furthermore, as LATEX is used with a number of engines and backends that provide
different sets of, sometimes equivalent, primitive commands, each package has to maintain
its own set of driver files for the various engines and backends: the result is an organizational
nightmare.

The main purpose of this task is therefore to develop standard interfaces to be used in a
controlled way as the basis of all access to PDF objects from LATEX code. These will also have
backend support and they will be part of the LATEX kernel. This will overcome the current
shortcomings and allow all extension packages that manipulate PDF objects to coexist safely.

Subtasks

1. Design and implement a programming-layer interface to manage the creation, access to
and updating of all types of PDF objects, including, for example, the catalog, the page
resources, annotations and XObjects. Also, abstract from the peculiarities of the syntax
of the different backends used by LATEX.

2. Add this interface to the LATEX kernel so that it can be used in other tasks (e.g., 2.3.1)
and by external packages that want to write PDF objects (task 2.4.3).

3. Document how to use the programming-layer interfaces from the kernel in external
packages.
Compile a list of important packages that should be updated to use the new stan-
dard programming-layer interfaces. This list should include rough time and resource
requirement estimates for the necessary work.

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• As PDF is a page based format, some PDF objects need to be managed on a per page
basis. This requires the creation of new hooks in various places in the LATEX kernel
code. This makes task 2.2.5 an important prerequisite.

• Metadata management (2.3.4) must be coordinated with this task.

• Subtasks 2 and 3 depend on the change strategy (task 2.1.1).

12

Deliverables

• The kernel’s programming-layer interface for accessing and manipulating PDF objects.
All the related drivers in the backend, for at least these routes: luatex, pdftex, dvips
and (x)dvipdfmx (subtask 1).

• Test coverage of the interface implementation and its behavior with all processes and
backends (subtasks 1 and 2).

• Documentation of how to use the programming-layer interface in packages (subtask 3).

• An evaluation of which external packages should be updated to use the programming-
layer interfaces, including rough time and resource requirements for use in this task
2.4.3 (subtask 3).

2.3 Structured PDF Tasks
2.3.1 Core tagging support

The code and infrastructure needed to support tagging of PDFs.

Description To produce a structured PDF, a number of specific operators and objects have
to be created and added to the PDF.

• Marked-content operators must be added to the page content streams.

• The logical structure of a document must be described by adding a hierarchy of objects
called the structure hierarchy or structure tree. The marked-content operators are leaf
nodes in this structure.
Entries in the dictionaries of these objects, such as layout attributes or alternative text,
can describe various aspects of the structure elements and so enhance any subsequent
further processing of the PDF.

• To identify roles, attributes and associated files, and to allow PDF consumer applica-
tions to find structure elements from content items, a number of dictionaries, name
and number trees have to be created, managed and referenced in the structure tree
root. Examples are the number tree /ParentTree, and the dictionaries /RoleMap and
/ClassMap.

To generate the necessary PDF objects and operators in the PDF, low-level code has to be
added to the LATEX kernel; in the case of LuaTEX engines this will be partly as Lua code.

In LATEX’s processing model the output (pages) are asynchronously generated, so the
necessary data for the above operators and objects needs to be collected, managed and, during
page production, added to the PDF.

Besides the kernel code, all packages that should be usable when producing structured
PDF, need to be enhanced either to write the appropriate operators and objects or to provide
the necessary data so that these can be written by kernel processes. This requires the design
and implementation of a suitable programming-layer interface, and in a later phase the
conversion of packages to use that interface.

For this task there already exists some experimental code written by the LATEX team [21].
This code needs to be further extended and then moved from this prototype to a production-
ready version.

13

Subtasks

1. Review the existing experimental code and add any missing parts, e.g., better interfaces
to declare and use attributes and to support the /IdTree. The new features in PDF 2.0,
such as /PronunciationLexicon, associated files and name spaces, will also need such
additional support.

2. Verify that the code works correctly with documents written in scripts that use writing
directions other than left-to-right. If necessary adjust it. This will only verify basic
functionality/correctness. Full support for documents with complex writing directions
is a research task (not undertaken as part of this project plan).

3. Design and implement a programming-layer interface for use by packages in the places
where marked-content operators and the logical structure elements should be created
when needed.

4. Design and implement a document-level interface to activate the code when a structured
PDF is to be created.

5. Move the low-level code and the programming-layer interface into the LATEX kernel so
that it can be used in other tasks (e.g., 2.3.2, 2.3.3, etc.) and by external packages when
generating structured PDF (task 2.4.3).

6. Document how to use the programming-layer interfaces in external packages.
Compile a list of important packages that should be updated to use the new stan-
dard programming-layer interfaces. This list should include rough time and resource
requirement estimates for the necessary work.
The number of external packages that should be updated is unfortunately rather large
in this particular instance!

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• Generalized cross-referencing support (2.2.2).

• Hook management, and page and document-level hooks are available (2.2.5).

• The PDF resource management (2.2.6).

Deliverables

• A standardized programming-layer interface to specify those places where marked-
content operators and logical structure elements should be created (subtask 3).

• Document-level interface for the activation of structured PDF generation (subtask 4).

• Sufficient test coverage of the interface implementation and its correct behavior in kernel
and package code (subtasks 1, 2, 3, 4 and 5).

• Documentation of how to use the programming-layer interface in packages (subtask 6).

• An evaluation of which important external packages should be updated to use the
programming-layer interfaces, including rough time and resource requirements for use
in task 2.4.3 (subtask 6).

14

2.3.2 Tagging paragraphs

The tagging of paragraphs is an essential component of structured PDFs and a requirement
for tagged PDF. But doing this automatically with LATEX is unfortunately not easy and will
require a large amount of work, which is the reason why it is defined as a task on its own.

Description Paragraphs in LATEX are normally not explicitly marked by the user, but au-
tomatically detected by the software through several mechanisms. In addition, the TEX
paragraph mechanisms are also used in situations that do not involve typesetting actual
‘ textual paragraphs’. This makes it difficult to create correct logical structure elements for
paragraphs and to add the associated marked-content operators in exactly the right places.
Also, care is needed to avoid adding markup in places where this would result in spurious
extra marked-content operators.

LATEX has internally the ability to seize control at the start and the end of paragraphs, but
the code executed currently in these places is very tightly linked to the low-level handling of
lists, headings, etc., and it was written with the focus on compactness and speed, rather than
extensibility.

Thus, the necessary augmentation of the LATEX kernel code requires coordination across
many different (and seemingly unrelated) areas of LATEX and many external packages in
order to ensure that there are no unintended side-effects or clashes.

Subtasks

1. Design and implement a mechanism for tagging text paragraphs. This requires different
implementations for the different TEX engines as their abilities are noticeably different
in this area.

2. Identify all places in the LATEX kernel where the low-level paragraph mechanisms are
used and ensure that they are updated to work with this implementation without
producing unwanted side-effects.

3. Identify places where the code could lead to spurious markup and disable the tagging
there.

4. Move the low-level code and the programming-layer interface into the LATEX kernel.

5. Document how to use the programming-layer interface for paragraph tagging in exter-
nal packages, and how to make existing code compatible with this interface.

6. Compile a list of important packages that should be updated to use the new standard
programming-layer interface for paragraph tagging. This list should include rough
time and resource requirement estimates for the necessary work.

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• Core tagging support is available (2.3.1).

• Hook management is available (2.2.5).

Deliverables

• An implementation for automated tagging of paragraphs that is compatible with stan-
dard structures from the LATEX kernel (subtasks 1, 2, 3 and 4).

• Sufficient test coverage of the interface implementation and its correct behavior in kernel
and package code (subtasks 1, 2, 3 and 4).

15

• Documentation covering how to use the programming-layer interface in packages
(subtask 5).

• An evaluation of which important external packages need to be updated to be compati-
ble with this implementation, including rough time and resource requirements for use
in task 2.4.3 (subtask 6).

2.3.3 Tagging basic elements

Make all standard basic LATEX structures, such as headings, lists, etc. ‘ tagging aware’.

Description Almost every LATEX document uses basic structures such as sectioning com-
mands or lists for which the project needs to provide support for tagging. In most cases this
support will need to be configurable and provide additional interfaces to add, for example,
alternative descriptions (task 2.3.5) or attributes and values.

For many of these basic structures there are external packages or classes that extend or
alter the structure by either redefining or patching core LATEX commands. Any changes to
these core commands will have a high potential for breaking existing documents and so they
must be carefully planned and tested.

This also means that, besides making core LATEX structures ready for tagging, it is essential
to the project’s success that it addresses all necessary updates to external packages (which in
this particular case is a rather large undertaking).

The main structures which should be considered in this task are:

• sectioning commands

• headers and footers of pages (which in most cases will be marked as artifact)

• numbered, bulleted and description lists: since these often contain paragraphs, the
coding here must be coordinated with 2.3.2.

• table of contents, table of figures and other similar list-like structures

• float environments and captions of figures and tables

• verbatim and code typesetting

• the title or title page of the document

• footnotes

• citation commands and the bibliography

• side notes

• language changes

• other standard structures, including: quotes and quotations (inline and displayed),
emphasized and emboldened text, etc.

Subtasks For all of the structures mentioned above the following subtasks must be done:

1. Analyze which standard tagging markup the structure should provide.

2. Implement the standard tagging commands and provide interfaces to adapt them if a
document has special markup needs.

3. Compile a list of all important core and external packages and classes that use, redefine
or patch any particular structure.

16

In addition there are the following general subtasks:

1. Document how to use any special interfaces provided for the tagging-enabled basic
structures.

2. Based on the outcome of subtask 3 regarding individual structures, compile a list of
all important packages that should be updated so that they don’t conflict with the
additional tagging code added to the kernel definitions of the structures. Also, ensure
that the package versions of each structure are also tagging enabled.
This list should include rough time and resource requirement estimates for the work
necessary.

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• Core tagging support is available (2.3.1).

• Hook management is available (2.2.5).

• For some structures the task must be coordinated with the refactoring of the hyperlink-
ing support (2.2.3).

• All subtasks depend on the change strategy (2.1.1).

Deliverables

• All basic standard LATEX structures are tagging-enabled with appropriate interfaces for
customization (subtasks 1 and 2).

• Sufficient test coverage of all updated commands and environments (subtask 2).

• Documentation of how to use the tagging-enabled structures (subtask 1).

• An evaluation of which important external packages should be updated to ensure that
structures remain tagging-enabled when these packages are loaded, including rough
time and resource requirements for use in task 2.4.3 (subtask 2).

2.3.4 Metadata management

A standard interface for specifying all document-related metadata in a uniform way.

Description LATEX documents typically contain a number of settings and declarations
related to the document as a whole and to its processing. Examples of such settings are the
values of the author, title and date, or the language (or languages) of the document. Other
such information is related to the target output, e.g., which backend to use in the workflow
and declarations specific to that backend, for example the PDF version or standard to use.
Some of this data is used by LATEX during typesetting, some is only passed on to the backend
and some is needed in both places.

The values needed to specify XMP (eXtensible Metadata Platform [12]) data in the PDF
file form an important part of the document metadata. Support for this type of metadata
is currently provided in ad hoc and incompatible ways by the packages pdfx [20] (see also
2.3.9), hyperxmp [10] and in a limited way by hyperref [9]. As the availability of XMP
metadata is an important requirement for several PDF standards (e.g., PDF/UA [11]), LATEX
must be extended to provide a standardized interface for it, and this interface must work in
conjunction with all the code for tagging and structured PDF.

17

Currently this type of data is specified, in a variety of ways and places, in the document
preamble: for example, through class and package options, or with commands provided by
the class or by a package. This is both confusing and error prone as users may set values at
too late a point in the preamble, or in conflicting ways. It is therefore necessary to define a
standard interface for declaring such metadata in well-defined places in the LATEX source.

Subtasks

1. Evaluate the methods pdfx, hyperxmp and hyperref provide for specifying and han-
dling XMP metadata.
Determine what other metadata should be managed by the LATEX kernel, and how
external packages can query and use this data.
Based on the results of this evaluation, design and implement programming-layer
interfaces for setting, and querying XMP and other metadata.

2. Design and implement a standard document-level interface for specifying the types of
metadata used by LATEX and PDF.

3. Move the programming-layer interface and the document-level interface into the LATEX
kernel.

4. Document how to use the programming-layer interfaces for metadata in external pack-
ages and how to make existing code compatible with it.
Document also the use of the document-level interface for setting metadata.

5. Compile a list of important packages that offer options or commands to set up such
metadata and so must be updated to use the new standard programming-layer inter-
faces. This list should include rough estimates of the time and resource requirements
for the necessary work.

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• PDF text string support (2.2.1).

• The task must be coordinated with the refactoring of the hyperlinking support (2.2.3).

• All subtasks depend on the change strategy (task 2.1.1).

Deliverables

• An implementation of the handling of XMP and other metadata that is compatible with
the standard structures from the LATEX kernel (subtask 1).

• Document-level interfaces to set up XMP and other metadata (subtask 2).

• Good test coverage of the interfaces and the XMP implementation (1, 2).

• Documentation covering how to use the programming-layer interfaces in packages
(subtask 4).

• An evaluation of which important external packages need to be adapted to the new stan-
dard interfaces, including rough time and resource requirements for use in task 2.4.3 (sub-
task 5).

• Documentation of how different types of metadata should be specified in a docu-
ment (subtask 4).

18

2.3.5 Alternate text support

The PDF format uses a number of dictionary entries to enhance a structure element or some
marked-content with additional material such as alternate text. LATEX should support the
addition of such alternate descriptions to a PDF document.

Description There are a few keys commonly used for the addition of such material: /Alt
for an alternative textual description of the content of an element; /ActualText for the exact
replacement of some symbol, word or phrase; /E for the expanded form of an acronym;
/PhoneticAlphabet and /Phoneme for pronunciation hints (PDF 2.0).

For the first three keys there are well-known use cases, so support on the code and
document level should be provided. Support for pronunciation is currently not planned as
part of this project.

Alternate textual descriptions are typically added by explicit user input since they cannot,
in most cases, be generated automatically. So interfaces for their input by authors are needed.
This input must then be converted into valid PDF text strings.

As alternate text can be long, it is important to design the user interface in such a way that
this text can be supplied using different methods, such as explicit inline input or by reading
it in from an external file.

Subtasks

1. Design and implement a user interface for alternate descriptions that can be added to
standard LATEX commands in a compatible way, so that existing documents continue to
work.

2. Add the interface to all standard LATEX constructs where applicable. For example,
commands for including graphics and LATEX environments for equations will need an
interface for /Alt.

3. Document how to implement this user interface in external commands and environ-
ments.
Compile a list of commands and environments in important external packages that need
to offer a user interface to alternate descriptions. For example, glossary and acronym
packages like glossaries [8] or acro [1] should probably have interfaces for /E.
This list should include rough time and resource requirement estimates for the necessary
work and define priorities for scheduling the work if it has to be undertaken as part of
the project.

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• LATEX kernel support for PDF text string conversion (2.2.1).

• LATEX kernel support for PDF object management (2.2.6).

• Core tagging support should be available (2.3.1).

• Subtask 1 is part of the general task to check how standard structures can be made
ready for structured PDF.

• Subtasks 2 and 3 depend on the change strategy (2.1.1).

19

Deliverables

• The user interface for adding alternate descriptions designed, implemented and docu-
mented (subtask 1).

• Updates of all relevant standard LATEX constructs (commands and environments) to
support this interface (subtask 2).

• Sufficient test coverage of the interface implementation and its use in all standard LATEX
constructs (subtasks 1 and 2).

• Documentation covering how to implement the user interface for commands and
environments in external packages (subtask 3).

• An evaluation of which important external packages need to provide a user interface
for adding alternate descriptions, including rough time and resource requirements for
use in task 2.4.3 (subtask 3).

2.3.6 Associated file support

Support for references to embedded or external files through /Filespec and the /AF key
(introduced in PDF 2.0).

Description The PDF 2.0 standard introduced the concept of associated files. Associated
files are references from various PDF objects to external or embedded files. For example, a
MathML or LATEX source can be referenced from the structure object of an equation, a code
listing can be referenced from some verbatim text, a csv file could be attached to a table, or
an audio clip could describe a picture. This leads to better alternate descriptions than using
the /Alt key, which restricts the content to the format of a PDF text string. Making use of
these possibilities will need support from the PDF consumer application, but LATEX should
nevertheless now add the interfaces for this.

Workflows to create these useful files for embedding are not part of this task, but should
be considered for later phases of the project. Examples of the content of such files include
the MathML derived from the LATEX source of an equation, or the verbatim text from some
code listing.

Subtasks

1. Provide internal LATEX support and the necessary programming-layer interfaces for
adding /AF keys to the structure objects.

2. Review existing (incompatible) ad hoc solutions for /FileSpec, and develop a single
standard approach that can be used by the LATEX kernel and external packages.
Add the solution to the LATEX kernel, and arrange for replacing the ad hoc solutions
with the new standard.

3. Design and implement a user interface for adding references to associated files. This
interface can then be incorporated into standard LATEX commands in an upward com-
patible way, so that existing documents continue to work.

4. Document how to implement the user interface in external commands and environ-
ments.
Compile a list of commands and environments from important external packages that
need to offer a user interface to associated files. This list should include a rough time
estimate for the necessary work, and define priorities for scheduling the work if it has
to be undertaken as part of the project.

20

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• The support of pdftex requires an engine update that allows setting the PDF major
version. This update will be available in all major TEX/LATEX distributions from 2020
onwards.

• Subtask 2 depends on 2.2.6.

• Subtask 3 is part of the general task to check how standard structures can be made
ready for structured PDF.

• Subtasks 1, 3 and 4 depend on the change strategy (task 2.1.1). They also require basic
general support for structured PDF in these packages.

Deliverables

• Standardized LATEX code supporting /AF and /FileSpec, replacing existing ad hoc
solutions (subtasks 1 and 2).

• The user interface for adding references to associated files, designed and documented
to the normal standards (subtask 3).

• Sufficient test coverage of the standardized code and interface implementation (sub-
tasks 1, 2 and 3).

• Documentation covering how to implement the user interface for commands and
environments in external packages (subtask 4).

• An evaluation of which important external packages need to provide a user interface
for associate files, including rough time and resource requirements for use in task 2.4.3
(subtask 4).

2.3.7 Tagging table structures

Tables often contain important data needed to understand a document. A properly tagged
table helps readers both to navigate the table and to extract this data.

Description There are quite a number of environments and commands, both in LATEX and
external packages, that support the typesetting of tables. However, with one exception, they
all deal only with markup for placing data into different cells and for the fine-tuning of the
table layout—markup for explicitly identifying the nature of each cell is not provided.

As a consequence, automated tagging of the table content, while preserving current input
syntax, will produce incompletely tagged PDFs, because the distinction between different
types of table cells can only be determined heuristically.

Currently there is some level of control available for setting up column structures, but
nothing comparable for marking up rows as being special, e.g., indicating that they are header
rows. So even visual identification (such as boldened text throughout a row) currently must
be done at the level of each individual cell, which is both cumbersome and also difficult to
parse for automated tagging.

Improving this situation therefore requires a new LATEX model for marking up table data.
This needs to be explored in two directions:

• Providing additional markup commands that allow users to add necessary information
about the nature of individual table cells (e.g., which cells are header cells) while
otherwise still using the existing approaches.
This is handled as part of the current engineering task.

21

• Designing a new syntax for specifying table data that identifies the logical parts of a table
correctly while additionally allowing for fine-tuning the typographical appearance.
This requires research and is discussed further in the research task 2.5.2.

The first approach is important for users working with existing documents from which
high-quality tagged PDF should be produced. For these users, augmentation of the existing
table markup with additional markup is most likely preferable to a complete rewrite of the
table data in a different syntax.

The second approach is intended for new documents where an improved markup syntax
will help to automatically provide correctly tagged tables.

In either case users will have to learn new syntax for specifying table data and thus an
important aspect of this task is to provide sufficient documentation.

Subtasks

1. Design and implement markup commands and declarations for LATEX’s existing table
syntax (tabular environment and array [3] package extension) that support the
markup of table headers and table cells for tagging and for adding table attributes.

2. Move this markup interface into the LATEX kernel and make it available in standard
table packages.

3. Document how users can use the markup from subtask 1 to correctly tag tables when
using the standard environments offered by LATEX.

4. Document how to implement the basic user interface in external table packages.
Compile a list of important external packages that should be updated to support
additional markup commands for tagging tables (while otherwise preserving their
current syntax). This list should include a rough time estimate for the necessary work
and define priorities for scheduling the work if it has to be undertaken as part of the
project.

Dependencies and prerequisites

• LATEX kernel support for hook configuration management (2.2.5).

• Core tagging support (2.3.1).

• The change strategy (2.1.1).

Deliverables

• An implementation of additional markup commands for tagging tables that can be
used with standard table markup in LATEX (subtasks 1 and 2).

• Sufficient test coverage of this implementation and its correct behavior in the kernel
and in standard packages (subtasks 1 and 2).

• User documentation and best practice guide for tagging standard LATEX table structures
(subtask 3).

• An evaluation of which important external packages need to be updated to support the
new basic table markup commands, including rough time and resource requirements
for use in task 2.4.3 (subtask 4).

22

2.3.8 Tagging mathematics

Basic support for tagging mathematical constructs.

Description LATEX is well known for its excellent and powerful proficiency in math type-
setting, and many LATEX documents contain elaborate mathematical content. Consequently,
properly tagging such content so as to make it accessible in various ways (e.g., copy-and-paste,
data extraction, etc.) is an important aspect of this project.

However, it is unfortunately not well understood how best to tag mathematical content in
a PDF so that it can be usefully accessed for varied purposes. This area therefore requires
substantial research (outlined in task 2.5.1) prior to defining appropriate engineering tasks.

The current engineering task is therefore limited to the provision of basic tagging. It also
covers the provision of the code needed to read the mathematical content verbatim (grab it)
and store it for various types of post-processing. Both of these tasks will be useful regardless
of any future work defined as the outcome of the research activities.

Subtasks

1. Add to the standard environments for displayed equations some code that grabs the
content of the environment verbatim so that it can, for example, be added to the /Alt
key or saved to a file (possibly following some limited post-processing that produces
other types of ‘ math-as-text’ representation).

2. Do the same for inline math formulas, e.g., $...$ syntax.

3. Review the LATEX core and important external packages to find all uses of TEX’s math
mode purely to obtain visual effects, such as superscript characters or vertical centering.
Since such uses could conflict with the additional processing code needed for actual
mathematical material, they will need special treatment or recoding.

4. Add to the standard math structures the code needed to tag them as Formula elements.

5. Design and implement a user configurable method to get (possibly post-processed)
mathematical content automatically added as alternate text when explicit alternate text
is not supplied in the document.

6. Implement this method for all the mathematical structures of standard LATEX.

7. Document how to implement these mechanisms for use in external math packages.
Compile a list of important external packages that should be updated to support the new
mechanisms for tagging and grabbing mathematical content. This list should include a
rough time estimate for the necessary work, and define priorities for scheduling the
work if it has to be undertaken as part of the project.

Dependencies and prerequisites

1. The change strategy being defined (2.1.1).

2. A suitable test environment (2.1.2).

3. Core tagging support is available (2.3.1).

4. Hook management is available (2.2.5).

5. LATEX kernel support for PDF text string conversion (2.2.1).

6. This task needs coordination with the tasks for alternate text support (2.3.5) and
associated files (2.3.6).

23

Deliverables

• All standard mathematical environments and inline math structures can be tagged and
will be enabled to grab their content verbatim. There will also be support for limited
post-processing to produce textual content for the /Alt key, or to save the data to a file
(subtasks 1, 2 and 4).

• Sufficient test coverage of the implementation and its correct behavior in the kernel and
standard packages (subtasks 1, 2 and 4).

• User documentation for customization of the math tagging (subtask 5).

• An evaluation of which important external packages need to be updated to support
the new mechanisms for tagging and grabbing mathematical content, including rough
time and resource requirements for use in task 2.4.3 (subtask 7).

2.3.9 Standards compliance: PDF/UA, PDF/X, PDF/A and possibly others

An interface and tools for creating documents that conform to specific PDF standards, when
feasible.

Description The major goal of this project is the production of structured PDF which is
a prerequisite for a number of different PDF standards (PDF/UA, PDF/X, PDF/A, PDF/E,
PDF/VT, etc., including different versions and conformance levels).

The purpose of this task is to evaluate to what extent conformance to such standards can
be automatically achieved, and to provide a document-level interface in which conformance
to a certain standard can be requested, directing LATEX to use the provided tools to make this
happen.

In most cases full compliance will not be achievable without further workflow steps, but
LATEX should be enabled to provide a solid basis, to warn about possible conflicts (e.g., when
unsuitable constructs are used) and to tell the user about the additional (probably manual)
actions needed to achieve compliance.

In this area there is already an important package, pdfx [20] by Ross Moore et al., whose
intention is to meet the requirements of the different PDF standards by providing, at least,
conforming metadata and color profiles.

Part of Ross’s work will be incorporated into the Metadata support task 2.3.4. This task will
include an evaluation of the remainder of his work, in particular the interface for requesting
standards compliance when processing a document.

Due to the fact that the different TEX typesetting engines offer slightly different features,
compliance with a certain PDF standard may require the use of a specific engine (and/or
additional workflow steps). One subtask is therefore to determine and document these
differences and to guide users in their selection of an engine and workflow, based on the
targeted result.

Subtasks

1. Analyze the work done in the package pdfx with respect to achieving compliance with
different PDF standards.

2. Design and implement a document-level interface for requesting compliance.

3. Incorporate this interface and the necessary tools into the LATEX kernel, or put them in
a core package (i.e., a standard add-on package managed by the LATEX project). This
will offer the functionality of pdfx in a way that works well with the new approach to
structured PDF in standard LATEX.

24

4. Document to what extent the different PDF standards can be achieved automatically
when using each of the available TEX engines, and what will remain to be done, probably
by manual actions, in a workflow.

5. Coordinate updates to the pdfx package to use the kernel functionality provided by
this project.

Dependencies and prerequisites

• A suitable test environment (2.1.2).

• Core tagging support is available (2.3.1, 2.3.2, and 2.3.3). This task can be worked on
without extended tagging support (for tables, math, etc.) in place, but eventually this
will also be needed (2.3.7, 2.3.8).

• Alternate text support is available (2.3.1).

• This task needs coordination with the Metadata management task (2.3.4).

• Subtask 3 depends on the change strategy (2.1.1).

Deliverables

• The user interface, with documentation, for requesting the production of a document
to a specific PDF standard (subtask 2).

• Sufficient test coverage of the interface implementation (subtask 3).

• Documentation of how, and to what extent, different PDF standards can be achieved
when using each of the TEX engines: pdftex, xetex, luatex (and the variants used for
Asian languages) (subtask 4).

2.4 Aggregation tasks
The tasks in this section describe activities that are carried out typically as subtasks of other
activities described earlier. Here we provide some extra detail.

2.4.1 User and developer acceptance testing

A testing infrastructure for extensive developer and user acceptance tests, including feedback
loops to improve the project’s outputs.

Description LATEX documents typically load a wide variety of external packages and classes,
i.e., code that is not developed or managed by the LATEX project team. A number of those
have become de facto standards and are expected to be supplied with any LATEX installation
or to be obtainable from CTAN (the Comprehensive TEX Archive Network [6]). Many other
packages are also available on CTAN (and often also in distributions) but these are used
only occasionally. These days the CTAN catalogue lists more than 5000 packages.

Moreover, there are also a large number of packages and classes that are not so generally
available, e.g., in-house styles, special publisher or university class files, packages developed
by individuals for their own use, etc.

This is one reason why even the very comprehensive set of tests that is planned for
all coding tasks of this project will not be able to cover a representative sample of LATEX
documents.

Furthermore, extending LATEX to produce structured PDF will introduce new aspects,
such as accessibility, for which the expert knowledge needed for testing lies, at least partially,
outside the LATEX community.

25

It is therefore very important to ensure that extensive user and developer acceptance
testing is undertaken, preferably including testers with specific domain knowledge.

The purpose of these acceptance tests is to obtain early feedback on

• document breakages, and errors in packages or classes;

• missing or broken features;

• problematic interfaces;

• suggestions about possible enhancements.

One necessary prerequisite for extensive user and developer testing has been already
provided by the LATEX project team: as of 2019 it is possible for the team to distribute,
automatically as part of the major LATEX distributions [7], pre-releases of LATEX that contain
new or altered functionality. This makes it possible to get feedback not only from package
developers or highly skilled users, but also from ‘ normal’ users. This works well because
becoming a tester no longer requires any specialized installation steps and testing can be
done on the fly using private documents.

Starting from phase II of the project, testers may need tools to validate the results (e.g.,
correct tagging of PDFs) without the need for manual inspection.

Subtasks

1. Recruit the widest possible variety of testers, from package developers, authors, editors,
publishers, companies etc., to test their existing documents for possible breakages
and other problems. This will be done both by direct contact and also by publishing,
through suitable channels, information about the project, its progress, and how to get
involved as a tester.
A large number of real documents, often quite complex ones, can be found on sites such
as arXiv.org [4]. Sites like these should be contacted to ascertain whether automated
testing of their corpora can be arranged.

2. Recruit the widest possible variety of package developers, authors, editors, publishers,
companies etc. who are willing to adapt their documents to the new syntax requirements
required to get a tagged PDF, either by direct contact or via publicity for the project
and its progress through suitable channels.

3. Recruit testers familiar with the use of assistive technology such as screen readers.

4. Compile a list of (online and offline) software tools for validation of PDF documents,
and document how to use them.

5. Setup within the project a feedback and issue tracker system specific to this type of
acceptance testing.

6. For every phase of the project, it should be known what requirements a document must
fulfill to allow the activation of tagging. This requires full documentation.

7. Feedback concerning external packages should be forwarded to their maintainers,
preferably together with suggestions on how to resolve any identified problems: see
also task 2.4.3.

Dependencies and prerequisites This task needs to be coordinated with the creation of
best practice guides and other publications (2.4.2) and with the update of important external
packages (2.4.3).

26

Deliverables

• Recruited testers with necessary skills for testing out the software and the tools devel-
oped in each task. Communication methods established to inform them when software
is ready for testing. A sufficient body of test documents has been collected and methods
for testing them established (subtasks 1, 2 and 3).

• The list of tools for validation is compiled and access to a suitable set of tools is available
(subtask 4).

• Issue tracking mechanisms and methods to forward feedback to external package
developers are set up and advertised (subtasks 5 and 7).

• The necessary documentation to enable testing and feedback are provided. This is a
deliverable of each individual task (subtask 6).

2.4.2 Best practice guides and other publications

An important aspect of this project (as with every project) is good documentation at all
relevant levels.

Description To support the ‘ code maintainers’, the code from every task will be docu-
mented using the methods, and to the highest standards, that are common within the LATEX
community. This will be of great help to those who will in the future maintain and enhance
it.

For ‘ class/package developers’ there will be documentation and best practice guides on at
least the following:

• how to add tagging support to
package code, and what to avoid;

• which packages are tagging-aware
and can be used;

• a discussion of problematic types of
structures and commands;

• general best practice advice;

• how to validate class/package code.

,

‘ LATEX users’ (authors, editors, etc.) will need full documentation and best practice guides on

• how to activate tagging;

• how to make document elements,
user definitions, etc., ‘ tagging aware’;

• how to use the interfaces to PDF
facilities such as /Alt;

• considerations necessary when pro-
ducing documents conforming to a
specific PDF standard, e.g., PDF/UA;

• which packages/classes can be used
to generate structured PDF;

• a discussion of problematic structures
and commands;

• general best practice advice;

• how to validate the final PDF.

Over time the project will enable the use of more and more (specialized) document
elements for use in structured PDFs. Additionally, the set of external packages that can be used
will grow. It is therefore important to provide a simple method for users to quickly check that
they are using only constructs and packages that have been updated to support tagging, etc.
The necessary data for making such checks should be stored in a simple database that supports
easy updating over the lifetime of the project. Thus, whenever new functionality/packages
become available, this can be immediately reflected in this database and other documentation.

27

There will also be a need to publish reports on the progress of the project, advertising
newly available features. This will popularize the project in the community and also recruit
volunteers to help with testing (and possibly with other work, such as updating packages).

Subtasks
1. Ensure that code is always fully documented.

2. Provide best practice guides for package developers.

3. Provide best practice guides for users.

4. Provide a package (structured-pdf-check) to verify that only supported packages
and constructs are being used, with warnings otherwise.

5. Publish progress reports as needed (matching release cycles).

Dependencies and prerequisites
• For code maintainer documentation: the change strategy (2.1.1) and the improved

testing system (2.1.2).

• For package writer documentation: the generalized cross-reference mechanism (2.2.2),
hyperlinking support (2.2.3), hook and configuration management (2.2.5), PDF ob-
ject management (2.2.6), the basic tagging interface (2.3.1), mathematics (2.3.8), and
tables (2.3.7).

• For user documentation: the interfaces for hyperlinking (2.2.3), alternate text (2.3.5),
associated files (2.3.6), metadata (2.3.4), mathematics (2.3.8), and tables (2.3.7).

Deliverables
• All code to be fully documented (subtask 1).

• A best practice package/class developer guide (subtask 2).

• A best practice user guide (subtask 3).

• A LATEX package for checking that only constructs and packages supporting structured
PDF generation are used in a document (subtask 4).

• Progress reports published in conjunction with software releases (subtask 5).

2.4.3 Coordination of the update of important external packages

LATEX documents typically use a number of external packages in addition to the core LATEX
software. The success of this project requires that a substantial number of these packages get
upgraded to support structured PDF.

Description To successfully generate structured PDFs from many LATEX documents, it is
not enough to update only the LATEX kernel and the core packages. Nearly all documents
use external packages, so it will also be necessary to provide enhanced/updated versions of
those packages, starting with the most important ones. From the viewpoint of this project,
these external packages can be divided into the following groups:

1. Packages of high importance (i.e., used in a substantial number of documents)

(a) with active maintainers;
(b) without any active maintainer.

2. Specialized packages used in only few documents.
While it is not possible to give precise criteria for this classification of packages into the groups
1 and 2, a rough division is easily done and will suffice for this project.

28

For a successful project, all the packages in group 1 must be adapted early on (i.e., as part
of the project) to produce structured PDF. Without these adaptations, it will be impossible to
generate correctly structured PDF from too high a proportion of ‘ real documents’. Adjusting
the code of packages in group 2 can be deferred to a later stage, or maybe not done at all.

A major problem here is the subgroup 1b. Many of the external packages for LATEX were
originally developed by volunteers who at some point moved on, leaving their work without a
maintainer. In many cases this has not been an issue up to now, because the packages worked
well and did not require active maintenance. However, for most packages the requirement
to produce structured PDF will make updating unavoidable. Therefore it will be necessary
either to find new volunteer maintainers within the LATEX community or for this project itself
to take on the necessary updating tasks.

Because it is not clear at this stage whether it will be possible to find new maintainers
for abandoned but important packages, the amount of work necessary to be undertaken as
part of the project can not be reliably estimated right now. However, it is likely that, for most
packages in this category, the updating work will need to use project resources and thus
lengthen the project timeline.

Subtasks

1. Provide a best practice guide (compiled from the results of various prerequisite tasks)
covering how to update an existing package to support structured PDF generation.

2. Identify all external packages belonging to groups 1a and 1b and calculate the resource
requirements of updating these packages.

3. Develop a plan for the order in which the packages should be updated.

4. Develop and implement a reporting and tracking method for the progress in converting
external packages to support structured PDF generation. This is needed because the
conversion of these packages will have to be spread over a long time period and it will
involve a substantial number of developers from outside the core project workers.

5. For group 1a, coordinate with their maintainers the conversion to using the new inter-
faces.

6. For group 1b, make an attempt to find new maintainers. If unsuccessful, carry out the
conversion to the new interfaces as part of this project.

Dependencies and prerequisites

• Input for this task will come from the following: 2.2.1(3), 2.2.2(3), 2.2.3(6), 2.2.5(4),
2.2.6(3), 2.3.1(6), 2.3.5(3), 2.3.6(4), 2.3.8(7) and 2.3.9(5).

Deliverables

• Best practice documentation for the conversion of external packages (subtask 1).

• An evaluation of the resources needed to update the large collection of external pack-
ages so that they support the production of accessible, tagged PDF. This will include
resources for the coordination of the project and technical support for package writers
and maintainers (subtask 2).

• A plan for doing the conversion, including progress tracking (subtasks 3 and 4).

• Updated versions of all important packages (subtasks 5 and 6).

29

2.5 Necessary Research Work
In contrast to the fairly well-defined engineering tasks outlined in sections 2.1 to 2.4, there
are some project tasks that require more extensive research. This research is likely to identify
further engineering tasks.

Three areas of necessary research are described in this section. This research work will
be carried out in parallel with the engineering tasks. It is important to recognize that this
research will very probably lead to additional engineering tasks, and that these will need to
be clearly defined and then incorporated into the project schedule (section 3), resulting in a
timeline for the project that is longer than the current estimate.

2.5.1 Research — Tagging mathematics

Description The PDF reference offers only the type ‘ Formula’. as a standard structure
element for equations and other mathematical material. Neither the PDF reference nor the
best practice guide make any suggestions about how to sensibly markup the content of such
an equation so that it becomes accessible to any PDF consumers. We are investigating the
following options to overcome this:

1. Some representation of the math formula could be placed as the value of the /Alt key
of the structure. This version must be a PDF text string, so some possibilities are: the
LATEX source for the formula; a textual (but non-verbal) version of the math using the
full Unicode range of mathematical symbols and math alphabets; the text for a ‘ natural
spoken language’ version of the math.
A light version of this will be implemented as part of engineering task 2.3.8.

2. The content of the formula could be tagged (as structured PDF (2.0) [15]) using
elements from the MathML namespace [5].

3. The LATEX source, a plain text version and/or a MathML representation of the formula
could be added as associated files or perhaps even in an attribute object dictionary for
user properties associated with the formula.

Options 2 and 3 both require additional engineering to allow for extensive post-processing
of the mathematical content in the LATEX source.

Not much is currently known about how PDF consumer applications can make use of
such structures and of enhanced alternate descriptions, nor about which of them (or which
combination) will offer the best user experience. Nor do we know much about what relevant
APIs (maybe not publicly documented) are now built into Adobe DC, or can easily be
engineered. Thus any implementation will depend on further research in collaboration with
Adobe engineers and other experts on accessibility of math, together with input from users
and the providers of PDF consumer applications.

Subtasks (naturally incomplete as this is research)

1. Research on whether a MathML representation of the equation should be preferably
added with variant 2 or 3, and consider how a suitable workflow could be implemented.

2. Explore other possible avenues to improve the use of mathematical content by PDF
consumer applications.

Deliverables

• Define appropriate engineering tasks as the result of the research and adjust the project
schedule as necessary.

30

2.5.2 Research — Tagging tables

Description As explained in engineering task 2.3.7, the current LATEX model for specifying
the structure of tables and the data they contain is not a good match to the model used by
the standard PDF structure elements and attributes for tables. Thus it is difficult to automate
the process of PDF tagging for table structures. Neither is the LATEX model well-suited to
tasks such as data entry or editing in tables.

It is therefore necessary to research alternative models for the LATEX input that better
support these two activities.

Another deficiency of the current LATEX model is its lack of support for adding markup
based on the rows, rather than the columns.

Subtasks (naturally incomplete as this is research)

1. Research models to improve data entry and manipulation in tables.

2. Review how existing core and external packages handle tables, and develop a design
and plan for an improved implementation of tabular material in LATEX. This should
approach table markup from a logical (rather than visual) perspective, treating rows
and columns equally. But it must still offer sufficient flexibility for fine-tuning the visual
presentation, of both rows and columns.

Deliverables

• A refactoring plan for replacing the existing table specification methods with a new
standard interface based a new model (subtasks 1 and 2).

• Define other appropriate engineering tasks as the result of the research and adjust the
project timeline as necessary.

2.5.3 Research — Using attributes

Description Attribute objects can be used to attach additional information to any structure
element. Generic support for such attributes is part of the tasks 2.3.1 and 2.3.3, and table
attributes will be handled in task 2.3.7.

But to decide whether more specific interfaces and additional support is needed for the
different attribute types, research is required. This should cover all types, i.e, layout attributes,
list attributes, table attributes, attributes governing translation to other formats like XML or
HTML, user properties and non-standard attributes.

Subtasks (naturally incomplete as this is research)

1. Research how current PDF consumers use attributes and which of the different types
and to what extent they are commonly supported in different applications.

2. Research to what extent the layout properties of a LATEX document can be automatically
mapped to layout attributes.

3. Research to what extent other attribute types can be automatically mapped from infor-
mation available to LATEX.

4. Determine if there is a need to provide document-level interfaces to set attributes
manually, or if it is sufficient to rely on automation.

Deliverables

• Define appropriate engineering tasks as the result of the research and adjust the project
schedule as necessary.

31

3 Project Timeline
The project is divided into six phases which follow the typical LATEX release cycles, i.e.,
each phase ends with a normal LATEX maintenance release. These releases normally happen
in spring (between April/May) and in fall (October/November), so typically in half year
intervals.

The work here is organized so that useful intermediate results will become available
as soon as possible in order to attract timely feedback and early adoption. We expect, for
example, that after phase 2 it will already be possible to automatically generate tagged PDFs
for a restricted set of documents. In later phases, improvements will appear that extend the
coverage. Also, some parts of the implementation will be moved into the core of LATEX.

Of course, during the various phases much will be ‘ work in progress’ and so we expect
testers and early adopters to work with understanding of such temporary limitations and of
the possibility that extra installation steps, etc., will be necessary.

In Figure 1 on the following page the dependencies for the major tasks of the project are
visualized, with the entry ‘ P’ indicating that task A (on the left) is a prerequisite of task B (on
the top). While these naturally define a partial order, there is some flexibility in ordering the
tasks as explained above. Necessary research (see section 2.5) will be carried out in parallel
with the engineering tasks to be executed in the six phases. Additional engineering tasks that
result from this research are not accounted for in the timeline. These will have to be added as
and when appropriate; they are likely to lengthen the project.

The time estimates for the indivdual tasks below assume that it is possible that at least
one developer works exclusively and full time on the task during this time with support by
further developers as necessary. Whether or not this will be possible in all cases will depend
on various factors, but one important one is the availability of appropriate funding to free
the responsible developers from undertaking other work to earn a living.

A realistic scenario would be that each phase takes one to two release cycles, which means
that the overall project will stretch across four years as a minimum, but probably somewhat
more. Additional funding will help to ensure timely delivery of the phase results and may
allow the scope to be broadened in some areas, but any expectation of earlier delivery would
not be realistic given the complexity of the topic.

It is also important to note that all updates to important external packages are to be
done using external resources, i.e., by the maintainers of those packages. This assumption is
probably not valid in all cases (see discussion in task 2.4.3). In that case additional work has
to be undertaken as part of the project, and this will also alter the timeline.

3.1 Phase I — Prepare the ground
This phase started in February 2020 and will probably end with the spring release in 2021.
The main goal of phase I is to provide the necessary basis for all the following phases.

An appropriate change strategy must be defined for all coding activities concerning the
LATEX kernel. This is because this project alters the core code in significant ways, way beyond
anything that happened in recent decade(s).

Similarly, an extension to the test and development environment is needed for nearly all
later tasks, to support the testing of code that involves adding objects to the final PDF output.

The other tasks tackled in this phase are for adding to the LATEX kernel the functionality
that is needed to implement tagging of PDF documents.

3.1.1 Tasks of phase I

Task 2.1.1 Define a change strategy for altering LATEX without causing serious issues for the
world-wide user base.
Estimated time: 4 weeks

32

Ch
an

ge
 S

tra
te

gy
Te

st
 E

nv
.

PD
F

st
ri

ng
s

X-
Re

fs
H

yp
er

lin
ki

ng
O

ut
lin

es
H

oo
ks

PD
F

ob
je

ct
 m

ng
t

Co
re

 T
ag

gi
ng

 (
In

fr
as

tr.
)

Pa
ra

gr
ap

h
Ta

gg
in

g
Ba

si
c E

le
m

en
t T

ag
gi

ng
Ta

bl
e

Ta
gg

in
g

M
at

h
Ta

gg
in

g
M

et
ad

at
a

A
lte

rn
at

e
Te

xt
A

ss
oc

ia
te

d
Fi

le
s

PD
F

St
an

da
rd

s
D

oc
um

en
ta

tio
n

&
 G

ui
de

s

Th
ird

-p
ar

ty
 U

pd
at

es
U

se
r A

cc
ep

ta
nc

e
Te

st
in

g

 Change Strategy P P P P P P P P P P P P P P P P
 Test Environment P P P P P P P P P P P P P P P P D

 PDF strings P P P P P P P D
 X-Refs P P P P X
 Hooks P P P P P P P D

 PDF object management P P P P P D
 Hyperlinking P P P P X

 Outlines P X
 Core Tagging (Infrastr.) P P P P P ↑

 Paragraph Tagging P P X
 Basic Element Tagging P ↓

 Table Tagging P X
 Math Tagging P X

 Metadata P P X
 Alternate Text P P X

 Associated Files P P X
 PDF Standards P P X

 Documentation & Guides P P
 Third-party Updates X

 User Acceptance Testing
 P = prerequisite, X = user testing needed, D = developer testing needed

Figure 1: Dependency matrix of the project

Task 2.1.2 Improve the current test and development environment to support the develop-
ment and testing of structured PDFs.
Estimated time: 6 weeks

Task 2.2.1 Implement PDF text string conversion.
Estimated time: 6 weeks

Task 2.2.5 Design and implement a hook management system for the LATEX kernel and add
hooks in all places where they are needed, for the extensions developed in later phases.
Estimated time: 10 weeks

Task 2.2.6 Design and implement programming interfaces for managing PDF objects as
needed by several other tasks in later phases.
Estimated time: 10 weeks

Task 2.4.1 Start to provide developer acceptance tests for all of the tasks above. Testing for
2.1.2 and 2.2.1 should conclude in phase 1 while testing for 2.2.5 and 2.2.6 will continue
in phase 2.
Estimated time for testing (external work):

• test environment: 8 weeks
• PDF string conversion: 8 weeks
• hook management: 12 weeks
• managing PDF objects: 6 weeks

33

Task 2.4.3 Coordinate updates to external packages with respect to PDF text strings (i.e., the
functionality provided with 2.2.1).
Estimated time for updating external packages (assumed2 to be external work):

• PDF string conversion: 8 weeks

3.1.2 Milestones of phase I

Detailed deliverables are given in the task descriptions in section 2. In contrast to later
phases, this initial phase does not have any results visible to end-users except for the hook
management (2.2.5) that also offers some user-level improvements. The highlights are:

• Change strategy is defined and documented;

• Development and test environment is extended (and usage documented);

• PDF text string conversions are available in the kernel;

• Standard hook management is designed, implemented and used by the kernel;

• Interfaces for PDF object management are designed and implemented (implemented
as a prototype add-on package at this stage).

3.2 Phase II — Provide tagging of simple documents
This phase will probably start in spring 2021. The main goal of phase II is to provide automatic
tagging of simple documents, excluding more complicated structures such as mathematics,
tables, etc.

This is achieved by setting up the necessary core code that provides the general mecha-
nisms, dealing with the issues around automatic detection of paragraph text and tagging it,
and by enabling a subset of the document elements to produce tags.

3.2.1 Tasks of phase II

Task 2.3.1 Design and implement the internal code necessary for the production of tagged
PDF. This task depends on the existence of the extended cross-reference mechanism
(task 2.2.2), which is in Phase III, therefore it will initially use some workarounds that
will be replaced in phase III.
Estimated time: 6 weeks

Task 2.3.2 Design and implement a mechanism for the automatic identification and tagging
of paragraph text.
Estimated time: 6 weeks

Task 2.3.3 Implement tagging for basic document elements provided by the LATEX kernel
and core classes and packages, e.g., section headings, lists, inner paragraph elements,
etc. More and more elements will become usable in tagged PDFs over time. This task
will continue and finish in phase III.
Estimated time: 8 weeks (plus 4 more weeks later).

Task 2.4.1 Continue with developer acceptance testing for tasks 2.2.5 and 2.2.6 and start
developer acceptance testing for 2.3.1 and 2.3.2.
Estimated time for testing (external work):

• tagged PDF support code: 8 weeks
2See the discussion in 2.4.3 on page 28 concerning this assumption.

34

• tagging paragraphs: 8 weeks

Task 2.4.3 Coordinate updates to external packages with respect to hook management and
PDF object management (i.e., the functionality provided with tasks 2.2.5 and 2.2.6 in
phase I).
Estimated time updating external packages (assumed to be external work):

• hook management: 20 weeks
• PDF object management: 12 weeks

3.2.2 Milestones of phase II

The main result of this phase will be the ability to generate usefully tagged PDFs from LATEX
documents that use only a restricted set of document elements. As task 2.3.3 is split between
this and the next phase, some of the elements that are to be enabled for tagging by this task
be still be out of scope at this point. Detailed deliverables are given in the individual task
descriptions in section 2. The highlights are:

• Availability of the low-level mechanisms needed for tagging.

• Automatic tagging of paragraph text.

• A subset of the standard document elements is “ tagging enabled”.

Thus, generation of tagged PDFs for documents using a restricted set of document elements
is possible, albeit at this point only through loading an additional package (provided by the
project) as not all code will have yet been moved into the LATEX kernel.

This means that it will be possible to start user acceptance testing to obtain initial feedback
that will then be incorporated into later phases.

3.3 Phase III — Remove the workarounds needed for tagging
The main goal of phase III is to extend the coverage of automatic tagging and to remove
the workarounds that had been necessary initially to provide a working prototype. More
complex structures are still not enabled for automatic tagging.

3.3.1 Tasks of phase III

Task 2.3.3 Continue with making the remaining basic document elements “ tagging aware”.
Estimated time: 4 weeks

Task 2.2.2 Design and implement the extended cross-reference mechanism for LATEX that is
needed for automatic tagging. Update the LATEX kernel to use the new mechanism.
Estimated time: 12 weeks

Task 2.3.4 Provide an interface for specifying all types of document metadata, and integrate
it with the kernel.
Estimated time: 6 weeks

Task 2.3.1 Update the internal code for tagging to use the extended cross-referencing func-
tionality, and remove the workarounds initially necessary.
Estimated time: 6 weeks

35

Task 2.4.1 Start with user acceptance tests (as explained in 2.4.1) for tasks 2.4.3 and 2.3.4
as soon as they are integrated into the development kernel and a pre-release is made
available. Also start user acceptance testing for basic tagging within the restrictions of
task 2.3.3.
Estimated time for testing (external work):

• extended cross-references: 8 weeks
• metadata: 8 weeks
• basic tagging (user-level): 12 weeks

Task 2.4.3 (After the acceptance tests have been completed) Coordinate updates to external
packages with respect to the extended cross-reference mechanism (i.e., the functionality
provided by 2.2.2). Estimated time updating external packages (assumed to be external
work):

• cross-references: 12 weeks

3.3.2 Milestones of phase III

At the end of this phase, functionality for basic tagging will be in a state ready for inclusion
into the LATEX kernel. This will then happen in phase IV. Detailed deliverables for all the
tasks are given in the individual task descriptions in section 2. The highlights are:

• An interface for specifying metadata is available and integrated in the LATEX kernel.

• An extended cross-referencing mechanism is available and integrated in the LATEX
kernel.

• Automated tagging of documents with a restricted set of document elements is available
and ready for integration into the LATEX kernel.

3.4 Phase IV — Make basic tagging and hyperlinking available
Basic automatic tagging is now ready for inclusion into the LATEX kernel, so the main goal of
phase IV is to incorporate all the code currently in a prototype package into the kernel itself.
This needs to be done carefully and cautiously as it should not have any negative impact for
users processing legacy documents. The second main task of this phase is to provide support
for hyperlinking in the LATEX kernel.

3.4.1 Tasks of phase IV

Tasks 2.2.6, 2.3.1, 2.2.1 and 2.3.3 Finish off the tasks by incorporating the code in the LATEX
kernel so that it is available by default.
Estimated time: 8 weeks

Task 2.2.3 Design and implement hyperlinking and move it into the LATEX kernel
Estimated time: 12 weeks

Task 2.3.8 Provide support for tagging the standard elements of LATEX that contain mathe-
matical material. See the task description for the limitations on the scope of this task.
The results of this task are used in phase V and only then integrated into the LATEX
kernel.
A related research task with extended scope (not included in the time estimation) is
described in 2.5.1.
Estimated time: 4 weeks

36

Task 2.4.1 Further user acceptance testing of tagging, which is now provided as part of the
LATEX kernel and no longer only as a prototype. Also do user acceptance testing on
hyperlinking, so that both can be activated at the end of the phase.
Estimated time for testing (external work):

• basic tagging integrated (user-level): 12 weeks
• hyperlinking: 8 weeks

Task 2.4.3 Coordinate updates to external packages to make their document elements “ tag-
ging enabled”, as the core infrastructure for this is now available as part of the LATEX
kernel.
Estimated time updating external packages (assumed to be external work):

• enable tagging: 80 weeks

This is a huge task and may influence the available time in later phases if some of this
work has to be done as part of the project, see comments in task 2.4.3 on page 28.

3.4.2 Milestones of phase IV

At the end of this phase, the functionality for basic tagging and hyperlinking will be directly
offered by the LATEX kernel. Detailed deliverables for all tasks are given in the individual task
descriptions in section 2.

3.5 Phase V — Provide extended tagging capabilities
With basic tagging now available the focus of this phase lies in providing extended support
for tagging by adding tables and formulas to the supported elements. Furthermore, interfaces
for specifying alternate text are being developed and added to all relevant elements, such as
graphical elements.

3.5.1 Tasks of phase V

Task 2.3.7 Design and implement a markup interface that supports enhanced tagging of
existing standard LATEX table structures.
Estimated time: 6 weeks

Task 2.5.2 Design (but not implement) a new table model that allows for a better, clearer
markup of table content, thereby enabling auto-tagging while preserving the current
flexible control of the visual representation. This requires some up-front research, as
described in the research task 2.5.2.
The time needed for implementation is not included in the estimates as it depends on
the outcome of the research task and of this design activity.
Estimated time: 12 weeks

Task 2.3.5 Design and implement interfaces for providing alternate text and update relevant
LATEX environments and commands to provide this interface.
Estimated time: 8 weeks

Tasks 2.3.7 and 2.3.8 Move the code from the two tasks (after user acceptance testing) into
the kernel (so that it is available in the next release). Note that the code for task 2.3.5
(Alternate text) will not be ready in time.
Estimated time: 4 weeks

37

Task 2.4.1 Do user acceptance testing for extended tagging (2.3.7 and 2.3.8 already prepared
in phase IV) and alternate text (2.3.5).
Estimated time for testing (external work):

• extended tagging (user-level): 12 weeks
• alternate text: 8 weeks

Task 2.4.3 Continue to coordinate updates to external packages to make their document
elements “ tagging enabled”. Start coordinating package updates with respect to hyper-
linking usage, which is now offered by the kernel.
Estimated time updating external packages (assumed to be external work):

• hyperlinking: 20 weeks

3.5.2 Milestones of phase V

At the end of this phase, the functionality for extended tagging will be directly offered by
the LATEX kernel. Detailed deliverables for all tasks are in the individual task descriptions in
section 2.

3.6 Phase VI — Handle standards
The goals of this phase are to provide support for the relevant PDF standards (as far as this is
possible using LATEX without post-processing the resulting PDF), and adding kernel support
for outlines and associated files.

3.6.1 Tasks of phase VI

Task 2.3.9 Evaluate and document to what extent conformance to different PDF standards
is possible with current LATEX. Provide an interface for requesting that documents
are formatted to conform to a specific standard (generating appropriate warnings if
unsuitable elements are found in the document).
Estimated time: 8 weeks

Task 2.2.4 Design and implement support for producing customizable outlines related to
the document structure, both automatically from the document’s heading structure as
well as manually through dedicated directives in the LATEX source.
Estimated time: 4 weeks

Task 2.3.6 Design and implement an interface for handling associated files and update all
relevant standard commands and environments of LATEX to support this.
Estimated time: 6 weeks

Task 2.4.1 Do user acceptance testing for the above tasks so that this support can be included
in the LATEX by the end of the current phase.
Estimated time for testing (external work):

• conforming to standards: 4 weeks
• outlines: 4 weeks
• associated files: 4 weeks

Task 2.4.3 Continue coordinating updates to external packages to make their document
elements “ tagging enabled”. Start coordinating package updates with respect to sup-
porting the alternate text and the associated files interfaces which are now offered by
the kernel.
Estimated time updating external packages (assumed to be external work):

38

• alternate text: 12 weeks
• associated files: 12 weeks

3.6.2 Milestones of phase VI

With the LATEX release concluding this phase the project, as currently planned, will finish
with the following milestones achieved:

• The production of tagged PDF using standard LATEX packages will be available.

• Relevant document metadata can be specified and will be used to provide XMP-encoded
data for the generated PDF, as required by certain PDF standards.

• Specifying alternate text for all relevant standard LATEX commands and environments
will be available.

• Attaching associated files to all relevant standard LATEX commands and environments
will be possible.

• Support for hyperlinking and outlines will be provided.

• LATEX documents can be formatted to conform to certain PDF standards.

Reaching the above set of milestones does not mean that from this point onwards one can
produce structured PDF from every LATEX source; however, structured PDF output can be
produced from any document source that loads only packages that have been updated to use
the new standard interfaces (as produced by this project).

As the conversion of external packages (see task 2.4.3) is not part of the project scope as
defined by this document, there will be further work necessary to broaden the set of LATEX
documents that can processed by a workflow for generating structured PDF output.

4 Resource assumptions and requirements
The project is assumed to be carried out by members of the LATEX Project team, with 2 FTEs
of their time being financed as part of the project’s budget. There are, however, a number of
(sub)tasks for which additional external help will be needed/helpful. The following is an
(probably incomplete) list of such additional resource requirements.

Maintainers of external packages The assumption is that all the necessary updates to exter-
nal packages are being done by their maintainers (if such maintainers exist) and will
not be funded from the project resources. This assumption may not be valid in all cases.

Technical writers An important part of the project will be to provide high-quality docu-
mentation, for both users and package developers. While this documentation will
be produced as part of the project tasks it would be helpful to get additional outside
help through professional copy-editors/technical writers in order to improve the final
results.

External experts For certain tasks, in particular the research tasks, participation of experts
external to the LATEX project team is assumed. Examples are Adobe DC engineers and
Adobe researchers.

Testers The user and developer acceptance testing each requires a larger amount of external
resources; see task 2.4.1 for a discussion of the required skills and needs.

Access to Adobe’s knowledge base For many tasks the project team will need to consult
documentation of PDF standards, Adobe products, APIs, etc. Some of these documents
may be ‘ internal’ or otherwise difficult to locate and access directly.

39

Software licences Although a lot can be done at minimal cost using Open Source software,
other licences will probably also be needed for, at least, the following: Adobe software,
Callas Software (pdfpilot), and other access tools and development tools.

References
Note that due to a bug in MacOS some links (those containing a #) may not work if clicked on from within this
document. In that case copy them to your browser manually to access the external document.

[1] acro. Typeset acronyms. https://www.ctan.org/pkg/acro.
[2] Adobe Systems Incorporated. Document management – Portable document format –

Part 1: PDF 1.7. 1st ed. July 1, 2008. https://www.adobe.com/content/dam/acom/en
/devnet/pdf/pdfs/PDF32000_2008.pdf.

[3] array. Extending the array and tabular environments. https://www.ctan.org/pkg/a
rray.

[4] arXiv.org. https://www.arxiv.org.
[5] David Carlisle, Patrick Ion, and Robert Miner. Mathematical Markup Language

(MathML) Version 3.0 2nd Edition. Apr. 10, 2014. https://www.w3.org/TR/MathML3/.
[6] CTAN. The Comprehensive TeX Archive Network. https://www.ctan.org.
[7] LATEX development formats are now available. Sept. 1, 2019. https://www.latex-pro

ject.org/news/2019/09/01/LaTeX-dev-format/.
[8] glossaries. Create glossaries and lists of acronyms. https://www.ctan.org/pkg/gl

ossaries.
[9] hyperref. A package for extensive support for hypertext in LATEX. https://www.ctan

.org/pkg/hyperref.
[10] hyperxmp. Embed XMP metadata within a LATEX document. https://www.ctan.org

/pkg/hyperxmp.
[11] International Standard. ISO 14289-1:2014. Document management applications —

Electronic document file format enhancement for accessibility — Part 1: Use of ISO
32000-1 (PDF/UA-1). 2nd ed. Dec. 2014. https://www.iso.org/obp/ui/#!iso:std:
64599:en.

[12] International Standard. ISO 16684-1:2019. Graphic technology — Extensible metadata
platform (XMP) specification — Part 1: Data model, serialization and core properties.
2nd ed. Apr. 2019. https://www.iso.org/obp/ui/#!iso:std:75163:en.

[13] International Standard. ISO 19005-2:2011. Document management – Electronic docu-
ment file format for long-term preservation – Part 2: Use of ISO 32000-1 (PDF/A-2).
1st ed. July 2017. https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-1:v1:
en.

[14] International Standard. ISO 19005-3:2012. Document management — Electronic docu-
ment file format for long-term preservation — Part 3: Use of ISO 32000-1 with support
for embedded files (PDF/A-3). 1st ed. Oct. 2012. https://www.iso.org/obp/ui/#is
o:std:iso:19005:-3:ed-1:v1:en.

[15] International Standard. ISO 32000-2:2017(en). Document management — Portable
document format — Part 2: PDF 2.0. 1st ed. July 2017. https://www.iso.org/obp/ui
/#iso:std:iso:32000:-2:ed-1:v1:en.

[16] l3build. A testing and building system for (La)TeX. https://www.ctan.org/pkg/l3
build.

[17] Leslie Lamport. LATEX—A Document Preparation System—User’s Guide and Reference
Manual. Reading, MA, USA: Addison-Wesley, 1985. isbn: 0-201-15790-X.

[18] latex. A document preparation system. https://www.ctan.org/pkg/latex.

40

https://www.ctan.org/pkg/acro
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.adobe.com/content/dam/acom/en/devnet/pdf/pdfs/PDF32000_2008.pdf
https://www.ctan.org/pkg/array
https://www.ctan.org/pkg/array
https://www.arxiv.org
https://www.w3.org/TR/MathML3/
https://www.ctan.org
https://www.latex-project.org/news/2019/09/01/LaTeX-dev-format/
https://www.latex-project.org/news/2019/09/01/LaTeX-dev-format/
https://www.ctan.org/pkg/glossaries
https://www.ctan.org/pkg/glossaries
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperref
https://www.ctan.org/pkg/hyperxmp
https://www.ctan.org/pkg/hyperxmp
https://www.iso.org/obp/ui/#!iso:std:64599:en
https://www.iso.org/obp/ui/#!iso:std:64599:en
https://www.iso.org/obp/ui/#!iso:std:75163:en
https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:19005:-3:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:19005:-3:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-1:v1:en
https://www.iso.org/obp/ui/#iso:std:iso:32000:-2:ed-1:v1:en
https://www.ctan.org/pkg/l3build
https://www.ctan.org/pkg/l3build
https://www.ctan.org/pkg/latex

[19] Frank Mittelbach et al. The LATEX Companion. Second edition. Reading, MA, USA:
Addison-Wesley, 2004, pp. xxvii + 1090. isbn: 0-201-36299-6.

[20] pdfx. PDF/X and PDF/A support. https://www.ctan.org/pkg/pdfx.
[21] tagpdf. Tools for experimenting with tagging using pdfLATEX and LuaLATEX. https:

//www.ctan.org/pkg/tagpdf.
[22] The LATEX Project. https://www.latex-project.org/.

41

https://www.ctan.org/pkg/pdfx
https://www.ctan.org/pkg/tagpdf
https://www.ctan.org/pkg/tagpdf
https://www.latex-project.org/

	Contents
	Introduction
	Why LaTeX?
	Why this software development project?
	Some history

	Scope of the project
	Deliverables in this document

	Project Overview
	General Prerequisite Tasks
	Change Strategy
	Improved test and development environment

	General LaTeX Extension Tasks
	Extend LaTeX core — PDF text string support
	Extend LaTeX core — Cross-referencing generalization
	Extend LaTeX core — Hyperlinking support
	Extend LaTeX core — Outlines (bookmark) support
	Extend LaTeX core — Hook and configuration management
	Extend LaTeX core — PDF object management

	Structured PDF Tasks
	Core tagging support
	Tagging paragraphs
	Tagging basic elements
	Metadata management
	Alternate text support
	Associated file support
	Tagging table structures
	Tagging mathematics
	Standards compliance: PDF/UA, PDF/X, PDF/A and possibly others

	Aggregation tasks
	User and developer acceptance testing
	Best practice guides and other publications
	Coordination of the update of important external packages

	Necessary Research Work
	Research — Tagging mathematics
	Research — Tagging tables
	Research — Using attributes

	Project Timeline
	Phase I — Prepare the ground
	Tasks of phase I
	Milestones of phase I

	Phase II — Provide tagging of simple documents
	Tasks of phase II
	Milestones of phase II

	Phase III — Remove the workarounds needed for tagging
	Tasks of phase III
	Milestones of phase III

	Phase IV — Make basic tagging and hyperlinking available
	Tasks of phase IV
	Milestones of phase IV

	Phase V — Provide extended tagging capabilities
	Tasks of phase V
	Milestones of phase V

	Phase VI — Handle standards
	Tasks of phase VI
	Milestones of phase VI

	Resource assumptions and requirements
	References

