
TUGboat, Volume 41 (2020), No. 1 39

Case changing: From TEX primitives to the
Unicode algorithm

Joseph Wright

1 Introduction
The concept of letter case is well established for
several alphabet-based scripts, most notably Latin,
Greek and Cyrillic. Upper- and lowercase1 are so
widely used that it may not be obvious that there are
several subtleties in converting case. However, those
subtleties are important in supporting a wide range
of users, and getting all of them right is non-trivial.

Whilst the English alphabet has simple case-
changing rules, when we look beyond English and
(possibly) beyond the Latin alphabet, tracking the
requirements becomes more complicated. Many of
these have been codified by the Unicode Consortium,
and following these guidelines means that different
pieces of software can give consistent outcomes.

Here, I want to look at how case changing can
be set up in TEX, primarily focussing on tools that
the LATEX Project have provided, but in the wider
context of the TEX ecosystem.

2 Different kinds of case operation
To understand what functionality is needed for case
changing, we first have to know what types of input
we might be dealing with. Broadly, there are two:
• Text: material that we will want to typeset or
similar, and which contains natural language
content. This material might also have some
formatting, and may be marked up as being in
a particular language.

• Strings: material used in code, for example as
identifiers, to construct control sequences or to
find files. This material will never have format-
ting, and should always give the same outcome,
irrespective of the language in which a document
is written.
Unsurprisingly, case changing strings is a lot

more straight-forward than case changing text: there
is no context to worry about. However, neither text
nor string case changing is reversible, and that leads
us to the different types of case changing operations
that are needed.

The Unicode Consortium describe four case op-
erations, three case mappings and one case folding:
• Uppercasing
• Lowercasing
1 The spelling of these concepts is somewhat variable: ‘upper

case’, ‘upper-case’ and ‘uppercase’ are all valid. The LATEX Project
have chosen the latter form as it makes creating clearly-named
code functions easier!

• Titlecasing: changing the first character to up-
percase and the remaining characters to lower-
case—we will see later how a small number of
situations need special handling

• Case folding: removing case information from
the input to allow ‘caseless’ operations

(I strongly recommend the Unicode Consortium’s
FAQ at https://unicode.org/faq/casemap_charprop.
html for more on the concepts here.)

Upper-, lower- and titlecasing material is about
text: material to be read by people and which can
have context- and language-dependence. In contrast,
case folding is about computers: doing things mech-
anically for comparing internal information. Com-
monly, programmers use all-lowercase for that, but
there are places where that would be wrong: again,
we’ll see some examples below. We’ll also see that
for TEX use, there are places we need ‘programmer’s
upper- and lowercase (a.k.a. CamelCase) for strings.

3 Changing tokens or changing output
Before we look at the methods we can use in TEX to
change case, it’s worth bearing in mind that for type-
setting, there’s the possibility of leaving any change
in appearance to the font mechanisms. Whilst this
is complicated in classical TEX, LuaTEX offers the
potential to delegate the task to well after character
tokens have been handed to the paragraph-builder.

However, it’s quite natural in many program-
ming languages to change the case of text (referred
to in many languages as strings). As such, I will
focus on methods that can alter the characters in
the TEX input stream.

4 Built-in TEX mechanisms
In the TEX world, the primitives \lowercase and
\uppercase are the obvious starting point for case
changing. These primitives use data stored in TEX
using the \lccode and \uccode primitives, respect-
ively, and only ever perform context-independent
conversion. Whilst there are important uses for this
behaviour well beyond ‘normal’ case changing, I am
going to focus here only on their utility (or otherwise)
for application to text.

The most obvious limitation of the primitives is
that they assume a single mapping for all characters.
Whilst there are a large number of simple relation-
ships, there are exceptions: see the Unicode data
file SpecialCasing.txt for the full list! The simple
approach taken by the primitives means that there
is no chance of handling context-dependence: this
is most obvious with Greek, where there are two
forms of lowercase sigma, one used only at the end
of words (ς).

40 TUGboat, Volume 41 (2020), No. 1

At the TEX level, the other issue with the prim-
itives is that they work by execution not expansion.
I think almost every trainee TEX programmer will
at some stage have tried
\edef\foo{\lowercase{STUFF}}

and been very surprised that it fails, and that they
need to use
\lowercase{\edef\foo{STUFF}}

instead. This shows up when you want to change
case inside a \csname construct too: you can’t use
\lowercase within the construction, but rather have
to use it around the entire thing.
\lowercase{\csname FooBar\endcsname}

There’s also one other very important consider-
ation: the primitives convert character tokens only,
but do not know the meaning of these tokens. This
leads to a few issues:
• They do not convert text hidden in macros: re-
latively easily remedied by applying \edef (or
\protected@edef) prior to using the primitive.

• They cannot handle letter-like control sequences
such as \aa or \l.

• They cannot handle multi-byte ‘letters’ in 8-bit
engines (so for example \uppercase{é} fails).

• They provide no mechanism for excluding char-
acters from case changing, most critically those
inside math mode.

5 The LATEX2ε kernel mechanism
The LATEX2ε kernel builds on the primitives to ad-
dress some of the issues above. First off, these com-
mands include an internal \protected@edef, which
ensures that input is expanded first, then the case
change is applied. They also provide definitions for a
set of letter-like commands to allow them to be case-
changed, stored as \@uclclist. This for example
allows \aa to be uppercased to \AA.

6 The textcase mechanism
Case changing is fundamentally something that ap-
plies to text, and never to mathematics. In LATEX, it
is pretty clear which content is mathematical, and
David Carlisle’s textcase package makes it possible
to case change text containing math mode content
without ‘breaking’ the latter. Thus for example
\MakeTextUppercase
{A simple formula:

$y = mx + c$}

yields
A SIMPLE FORMULA: y = mx+ c

The package also allows text to be marked as not to
be altered during case changing, using the marker
command \NoCaseChange.

It’s possible to load textcase such that it replaces
the LATEX2ε kernel case-changing commands with
its own. That gives away that it works in a fun-
damentally similar way: it’s a more sophisticated
wrapper around the TEX primitives. That means it
still has the core issues of not knowing the meaning
or context of its argument tokens, and not being
usable in an expansion context.

7 The expl3 mechanisms
7.1 The core concepts
At the core of the expl3 case changing mechanisms is
the idea that the implementation should provide, as
far as possible, the full set of Unicode Consortium
functionality. The code is also written to work purely
by expansion, meaning that it can be used inside
\csname construction or inside an \edef.

To support all this, the input must be examined
on a token-by-token basis and converted ‘manually’.
It also means that \lowercase and \uppercase can-
not be used. Instead, for single-token conversion,
expandable functions which can convert single tokens
are defined: \char_lowercase:N, \char_uppercase:N,
\char_titlecase:N and \char_foldcase:N. Almost al-
ways, those are too low-level. Thus we will not look
further at the ‘back end’, but will rather concentrate
on functions which can be used for longer pieces of
input.

7.2 Strings
In TEX terms, a string is a series of characters which
are all treated as ‘other’ tokens (except spaces, which
are still spaces). That’s important here because it
means strings won’t contain any control sequences,
and because with pdfTEX there can’t be any (useful)
accented characters.

The most obvious need to handle case in pro-
gramming strings is when comparing in a caseless
manner: ‘removing’ the case. Programmers often
do that by lowercasing text, but there are places
where that’s not right. For example, as mentioned
above, Greek has two forms of the lowercase sigma
(σ and ς), and these should be treated as the same for
a caseless test. Unicode defines the correct operation:
case folding. In expl3, that’s called \str_foldcase:n:
\str_foldcase:n { AbC }

gives
abc

whilst the slightly more challenging
\str_foldcase:n { ὈΔΥΣΣΕΎΣ }

TUGboat, Volume 41 (2020), No. 1 41

gives

ὀδυσσεύσ
Much more rare is the need to upper- or lower-

case a string. Unicode does not mention this at all,
but in TEX we might want to construct a control
sequence dynamically. To do that, we might want
to uppercase the first character of some user input
string, and lowercase the rest. We can do that by
combining \str_uppercase:n and \str_lowercase:n
with the \str_head:n and \str_tail:n functions:
\str_uppercase:f { \str_head:n { someThing } }
\str_lowercase:f { \str_tail:n { someThing } }

which produces

Something
(We could also split off the first token and use the
single-character \char_uppercase:N here.)

7.3 Text: basics
Case changing text is much more complicated be-
cause it has to deal with control sequences, accents,
math mode and context. The first step of case chan-
ging here is to expand the input as far as possible:
that’s done using a function called \text_expand:n
which works very similarly to the LATEX2ε command
\protected@edef, but is expandable. We don’t really
need to worry too much about this: it’s built into
the case changing system anyway.

Upper- and lowercasing is straight-forward: the
functions have the natural names \text_uppercase:n
and \text_lowercase:n. These deal correctly with
things like the Greek final-sigma rule and (with Lua-
TEX and XƎTEX) cover the full Unicode range. Thus
we can have examples such as the following. (Recall
that spaces are ignored in expl3 input, and ~ is used
to produce a space.)
\text_lowercase:n { Some~simple~English }
\newline
\text_uppercase:n { Ragıp~Hulûsi~Özdem }
\newline
\text_lowercase:n { ὈΔΥΣΣΕΎΣ }

some simple english
RAGIP HULÛSI ÖZDEM
ὀδυσσεύς
A variety of standard LATEX accents and letter-

like commands are set up for correct case changing
with no user intervention required.
\text_uppercase:n { \aa{}ngstr\"{o}m ~ caf\'{e} }

produces the token list
\AA{}NGSTR\"{O}M CAF\'{E}

7.4 Case changing exceptions
There are places that case changing should not apply,
most obviously to math mode material. There are
a set of exceptions built-in to the case changer, and
that list can be extended: it’s easy to add the equi-
valent of \NoCaseChange from the textcase package.
First, create and activate the command, excluding
it from expansion and excluding its argument from
case-changing:
\cs_new_protected:Npn \NoCaseChange #1 {#1}
\tl_put_right:Nn

\l_text_case_exclude_arg_tl
{ \NoCaseChange }

then we can use it
\text_uppercase:n

{ Hello ~ $y = max + c$ }
\newline
\text_lowercase:n

{ \NoCaseChange { iPhone } ~ iPhone }

which gives us the desired results
HELLO y = max + c
iPhone iphone

without having to worry further. Note that case
changing does take place within braces (in contrast
to BIBTEX’s approach):
\text_uppercase:n { { Text } ~ More }

gives
TEXT MORE

The reason is simple: braces are difficult to control
and to remove, and can lead to undesirable impact
on kerning and so on. (It is likely that a dedicated
conversion function to approximate BIBTEX case pro-
tection by expl3 protection will be added; the biblatex
maintainers are keen to have this ability.)

7.5 Titlecasing
Commonly, people think about uppercasing the first
character of some text then lowercasing the rest, for
example to use it at the start of a sentence. Unicode
describes this operation as titlecasing, as there are
some situations where the ‘first character’ is handled
in a non-standard way. Perhaps the best example is
IJ in Dutch: it’s treated as a single ‘letter’, so both
letters have to be uppercase at the start of a sentence.
There are also a small set of codepoints that look
like two letters, and have special forms when they
appear as the titlecase first-character of a word.

Depending on the exact nature of the input, we
might want to uppercase the first ‘character’ and then
lowercase everything else, or we might want to upper-
case the first ‘character’ and then leave everything

42 TUGboat, Volume 41 (2020), No. 1

else unchanged. These are called \text_titlecase:n
and \text_titlecase_first:n, respectively. Most of
the time, things look pretty simple:
\text_titlecase:n { some~text } \newline
\text_titlecase:n { SOME~TEXT } \newline
\text_titlecase_first:n { some~text } \newline
\text_titlecase_first:n { SOME~TEXT }

gives
Some text
Some text
Some text
SOME TEXT

To see titlecasing in action, let’s stick with Dutch
(we’ll see how the language argument works shortly):
\text_titlecase:nn { nl } { IJSSELMEER }

should be
IJsselmeer

and not what most English speakers might expect
Ijsselmeer
As we are not simply grabbing the first token of

the input, non-letters are ignored and the first real
text character is case-changed. So when we say
\text_titlecase:n { `some~text' }

we of course want the result to be
‘Some text’

without needing to worry about that first character.

7.6 Language-dependent functions
One important context for case changing text is the
language the text is written in: there are special con-
siderations for Dutch, Lithuanian, Turkic languages
and Greek. That’s all handled by using versions of
the case-changing functions that take a second argu-
ment: a BCP 47 string which can determine the path
taken. We’ve already seen Dutch, so let’s examine
the other special situations.

We’ve seen Greek for handling the final-sigma
rule, but we also need to remove accents when up-
percasing (but not when titlecasing). Sticking with
the hero of myth
\text_uppercase:n { Ὀδυσσεύς } \newline
\text_titlecase:n { Ὀδυσσεύς } \newline
\text_uppercase:nn { el } { Ὀδυσσεύς } \newline
\text_titlecase:nn { el } { Ὀδυσσεύς }

gives us the expected
ὈΔΥΣΣΕΎΣ
Ὀδυσσεύς
ΟΔΥΣΣΕΥΣ
Ὀδυσσεύς

For Turkish, it’s all about the dot over an i:
that’s a different letter from the dotless ı, and so
\text_uppercase:n { Ragıp~Hulûsi~Özdem }
\newline
\text_uppercase:nn { tr } { Ragıp~Hulûsi~Özdem }

produces
RAGIP HULÛSI ÖZDEM
RAGIP HULÛSİ ÖZDEM
Finally, Lithuanian needs us to retain dots on i

and j when we add certain accents
\text_lowercase:n

{ ÌÍĨÌÍĨJ̀J́J̃Į̀Į́Į̃ }
\newline
\text_lowercase:nn { lt }

{ ÌÍĨÌÍĨJ̀J́J̃Į̀Į́Į̃ }

produces (in \large for better visibility)
ìíĩìíĩ j̀j́j̃į̀į́į̃
i̇i̇̀ĩ̇́ i̇i̇̀ĩ̇́ j̇j̀̇j́̇̃ į̇į̀̇į́̇̃

with explicit ‘more above’ dot accents (and yes, it
does look odd here, but that’s a font shaper decision).

There’s one more special case: the capital Eszett
in German. Normally, capitalisation of ß (U+00DF)
yields simply SS (two characters), but there is now a
Unicode codepoint (U+1E9E) for the capital form, ẞ
(that’s a capital Eszett in the Courier Narrow font
we’re using in this article; it looks nearly the same as
the lowercase). There is currently no official BCP 47
name for this (that I know of), so one needs to use
\text_uppercase:nn { de-alt } { ß }

8 The Lua route
There is another way to do case changing in expan-
sion contexts: using Lua.
\directlua{tex.print(unicode.utf8.lower

("A string"))}

That works, but it leaves us with a few issues. For
a start, anything that depends on TEX tokens, like
math mode, needs more work. Secondly, it doesn’t
deal with things like Greek final-sigma. That’s all
solvable with enough Lua, but it’s not (yet) an out-
of-the-box solution.

9 Conclusions
Implementing all of the subtleties of case-changing
following the Unicode Consortium requires effort,
but is accessible and can be done by pure expansion.
Case-changing functions in expl3 are now mature and
stable, and ready for wider use.

� Joseph Wright
Northampton, United Kingdom
joseph dot wright (at) morningstar2.co.uk

