
TUGboat, Volume 41 (2020), No. 2 201

Quo vadis LATEX(3) Team—A look back
and at the upcoming years

Frank Mittelbach and the LATEX Project Team

Abstract

This is a brief write-up of a talk given by the author
at the TUG’20 online conference.

The talk touches briefly on the questions “where
we are coming from” (we being the LATEX Project
Team), “where we are now” and then focusses on the
LATEX Project’s plans for the upcoming years, which
will primarily be focussed on providing an out-of-the-
box solution for generating tagged PDF with LATEX
and will include gentle refactoring of parts of the core
LATEX and providing important functionality, such
as extended standard support for color, hyperlinks
etc., as part of the kernel.

This is a multi-year journey that we have just
started and we will briefly explain the places this will
take us through. At its end we expect that LATEX
users are able to produce tagged and “accessible”
PDF without the need to post-process the result of
their LATEX run.

Contents

1 A quick walk through 30 years of history 201
The birth of the LATEX project 201
The first years 202
A new LATEX version 202
Highlights of the following decades 202

Around 1997 202
The new millennium 202

A change in policy 203
Managing future enhancements 203

2 Activities in 2020 203

3 A look at the future 204
Important areas for urgent improvement . 204
Project(s) for the upcoming years 204
A focus change—modernize LATEX through

gentle refactoring 204
Hook management as an example 205

4 The tagged PDF project 205
Background and project status 206
Project phases and timeline 206

5 Stay tuned 207

1 A quick walk through 30 years of history

In this section we take a short tour from the origins
of LATEX to the present day in order to better under-
stand where we came from and its influence on how
we see the future shaping.

+

IT
:
\
iJ

:l

:jl
: -1-

'1

-:1

With lAkX into the Nineries

Frank Mittelbach & Rainer Schöpf

TUG Anniversary Meeting

Stanford

23th August 1989

The Concept of IATEX

The Essential Features of IATEX

Limitations of the IAT# Version 2.09

New Demands

A Concept for a new lmplementation

I nstitutiona I Considerations

+ .1
Figure 1: The title slide from 1989

The birth of the LATEX project

A bit more than thirty years ago I gave my first
international talk at the 1989 TUG conference at
Stanford (Figure 1). There I lectured in front of
Leslie Lamport and Don Knuth, boldly pointing
out deficiencies of LATEX2.09 and what is needed to
improve on it.

Our criticism wasn’t new to Leslie, as we had
sent him many bug reports and suggestions during
the previous years. And after a long meeting follow-
ing the talk, Leslie passed maintenance and future
development of LATEX on to Chris Rowley, Rainer
Schöpf and myself. For more details on the events
back then see the conference proceedings [9].

Leslie continued to work with us, discussing
concepts and interfaces, but did not participate in
any of the coding for a new version. By the time
LATEX2ε got released he had fully retired from work-
ing on LATEX (except for sending in the occasional
bug report like any other user).

Thus, this day in late August 1989 marked the
origin of the LATEX Project, later often referred to as
the LATEX3 project.

We were young (isn’t that always the problem?)
and had big plans, but it would certainly be impos-
sible to turn even some of them into reality had we
not had the fortune to soon recruit a number of ad-
ditional members— influential in shaping LATEX2ε
and beyond.

Few of them will need introductions to anybody
who has worked a while with LATEX, but for the record
here are the people beside Chris, Rainer and myself
to praise or blame for LATEX2ε and many of the pack-
ages that you are still using today: David Carlisle, Jo-
hannes Braams, Alan Jeffrey, Denys Duchier, Michael

Quo vadis LATEX(3) Team—A look back and at the upcoming years

202 TUGboat, Volume 41 (2020), No. 2

Figure 2: The 1993 LATEX3 Programmer’s Guide

Downes and Robin Fairbairns. All got their hands
dirty in the development of today’s LATEX and/or
had a lasting influence on what later became expl3.

The first years

The early nineties were fairly productive years for the
team and by around 1992 we had built a complete
kernel for a new LATEX3 system. It was able to
compile its own user manual. Figure 2 shows a
version from 1993.

In my talk I titled the slide showing this picture
“A fully working (useless) LATEX3 kernel”. The rea-
son is that we found out to our dismay that there
was serious danger of dying of excessive caffeine con-
sumption while waiting for even a small document
to compile (let alone something like that guide).

Basically we were just several computer gener-
ations too early (or lousy programmers, or both).
We invented, for example, a system comparable to
Cascading Style Sheets (CSS)— long before that ap-
peared in browsers. But all these ideas required
much more computing power than was available on
typical machines back then.

So in the end we gave up and decided that it
was a nice but impossible dream.

A new LATEX version

So instead of continuing with LATEX3 we cleaned up
all the extensions and improvements we had made
for LATEX2.09, developed a graphics and color ab-
straction and bundled everything under the name
LATEX2ε. This was then promoted as the “newly
revised LATEX standard”.

Leslie wrote an updated LATEX manual [3] and
Michel Goossens and myself with the help of Alexan-
der Samarin produced the first LATEX Companion [2],
also known as the Doggie book to many LATEX users
(Figure 3).

Figure 3: The “doggie” book: the first edition of the
LATEX Companion.

LATEX2ε had a fairly shaky start, largely due to
the fact that a small but vocal minority loudly argued
against using it and suggested to stay with LATEX2.09
instead. The main reason given was that “nobody
needs these new 8-bit fonts with precomposed foreign
characters and that they take a huge amount of
unnecessary space on your hard disk”.

However, in the end it took off like a rocket,
largely because of all the other goodies it offered—
solving many of the problems people were struggling
with in the past. If you look through the Web for
LATEX2ε you will find a large number of books in
various languages that appeared in the following
years, clearly showing that there was a high level of
interest in the software.

For us it was an important lesson to learn how
close success or failure can be, if you have a small
but vocal group opposing you.

Highlights of the following decades

Presenting any reasonably complete account of the
works of the LATEX team throughout the years would
fill many pages, so here we restrict ourselves to only
a few highlights that are relevant for what we intend
to do in the future.

Around 1997

At some point we decided to release some of the work
we did for LATEX3 as a package on CTAN named expl3,
mainly to preserve it but also because computers
had gotten faster, and it seemed that the code could
become usable after all at some point in the future.

The new millennium

That action got younger people interested, and first
Morten Høgholm and later Will Robertson and Jo-
seph Wright pushed for a complete overhaul of the

Frank Mittelbach and the LATEX Project Team

TUGboat, Volume 41 (2020), No. 2 203

Figure 4: The expl3 logo

language. This happened in several phases between
2005 and 2012; see [12, 4] for more details.

Large application packages, such as fontspec,
siunitx and others, got written in expl3. At some
point the language was evidently in a reasonably
stable state and we announced it as fit for general
use [13].1

Now with a stable expl3 around 2014 we started
promoting it and one of the actions was to use a logo
for it, which was designed for us by Paulo Cereda—
a lovely hummingbird pecking at the “l” (Figure 4).

To indicate that we are moving into new waters I
pushed for using the hummingbird also as the official
new logo for LATEX and at some point later we made
the switch.

Initially there had been some concerns to make
the LATEX “brand” unrecognizable if it isn’t associ-
ated with some kind of a lion, but in retrospect it
seems fairly clear that the logo was positively re-
ceived and there is no question these days that this
particular bird represents today’s LATEX.

A change in policy

A big step was taken in 2015 when we announced
a new bug-fix and enhancement policy. Until then
the LATEX2ε format was essentially kept unchanged.
Even serious bugs were either not fixed at all, or
fixed by adding the fix to the package fixltx2e that
one could or could not load as desired.

This meant great stability but it also meant that
only the few people who added fixltx2e would benefit
from the fixes, while the great majority would stay
with the buggy version. In the beginning this was fine
but over time it became a burden because packages
have to provide alternative code paths based on
fixltx2e being loaded or not. We therefore switched
to the approach that fixes get applied by default (i.e.,
everybody receives them) and instead now offer a
way (though a rollback mechanism [5, 7]) to opt out,
if necessary.

Thus what happened in 2015 was that the ac-
cumulated fixes previously in fixltx2e got moved into

1 The name expl3 stands for “EXperimental Programming
Language (LATEX)3” but it was kept even after it had long
ceased being experimental.

the LATEX kernel and the package reduced to an
empty shell, unless you used it with an old LATEX
format.

Around that time we also started to bring ex-
ternal developments into core LATEX. For example,
we officially added support for LuaTEX to the kernel
and took over the maintenance and development of
amsmath from the American Mathematical Society.

Managing future enhancements

But we also went a step beyond bug fixes and in-
tegrations. To prepare for future developments we
wrote a new testing and distribution environment
(l3build [8]) that has been used by us to maintain
the kernel sources, and over time also by many other
package developers around the world.

A relatively recent activity was to arrange with
the major distributions, i.e., TEXLive, MacTEX and
MiKTEX, to provide so-called “LATEX development
releases”, allowing users and package developers to
test pre-releases of LATEX with ease [6].

We also announced that necessary enhancements
to the code (to keep it relevant) would be presented
from now on in most cases as opt-out rather than
opt-in solutions.

A good example for this policy change is the
switch from legacy 8-bit code pages to Unicode, or
more precisely to the UTF-8 encoding. This hap-
pened in 2018. With the LATEX release in that year
the default input encoding for LATEX became UTF-8,
and in retrospect it is fair to say that few people
have noticed any ill effects with their document and
had to apply the opt-out. Most people only noticed—
if they noticed the change at all— that they could
finally use Unicode characters in their documents
without problems, a feature that was badly lacking
in LATEX previously.

2 Activities in 2020

Two important changes happened in the spring 2020
release of LATEX:

• One was a long overdue modernization of LATEX’s
font selection scheme to better support all the
new high-quality OpenType fonts;

• The other was described in the LATEX Newsletter

as “improved load-times for expl3”.

Why is the second bullet of any importance? At the
time of the release it was indeed nothing more than
what it said: users with documents loading expl3 (to
begin with, all X ETEX or LuaTEX users) experienced
noticeably faster processing times.

Quo vadis LATEX(3) Team—A look back and at the upcoming years

204 TUGboat, Volume 41 (2020), No. 2

But its importance lies in the fact that it marks
the end of one era and the beginning of a new one.
LATEX now greets you with

LaTeX2e <2020-02-02>

L3 programming layer <2020-06-18>

and this means that thirty years after first dreaming
about it, LATEX finally comes equipped with the
LATEX3 programming layer included as part of the
format.

3 A look at the future

LATEX has stayed surprisingly relevant given that
its original design dates back to the 1980s.2 It has,
however, limitations, some due to the underlying
engine and some due to design decisions made in the
past.

Important areas for urgent improvement

Perhaps the most important limitation is that until
now LATEX concerned itself only with producing a
“printed result” with paper as the ultimate output
medium in mind. Any other usage is either not sup-
ported or not directly supported. However, for quite
a while now, other usage has become increasingly
important. Many documents are never printed or
printed only as a secondary action.

LATEX2ε added some support for graphics and
limited color printing, but otherwise followed the
same paradigm. Hyperlinks and other Web publish-
ing support are layered on top, not as integral parts
of the design.

As a notable example, the hyperref package has
to redefine a larger number of LATEX’s internals and
many commands of other packages to be able to
achieve its goals and even so is often enough only able
to do so by imposing restrictions. Other packages
need to patch the same areas, resulting in conflicts
and limitations.

Another important issue is that LATEX very care-
fully throws away the wealth of structural informa-
tion it has at its disposal while producing output
pages. As a result a PDF or DVI file produced by
LATEX is just a stream of positioned glyphs without
much structural information preserved.

If your intention is only to print that document,
then this is all that is required, but if you want
to produce, say, an accessible PDF document, then
a significant amount of structural information and
other data has to be embedded into the final output
document to guide screen readers, etc., or adhere
to the PDF/UA (Accessibility) standard. At the

2 Or the early 1990s if you think of LATEX2ε as the starting
point for today’s LATEX.

moment this requires extensive manual labor and
processes that often have to be repeated after making
even minimal changes to the LATEX source.

Project(s) for the upcoming years

With the challenges outlined in the previous section
in front of us we are focussing on a number of areas
to address them:

• Embrace and integrate more functionality from
existing packages into the LATEX kernel;

• Provide extended and unified color management,
with graphics and font(glyphs) integration;

• Provide standard interfaces for functionality cur-
rently available only in an ad hoc way, or not
available at all;

• Enable LATEX to automatically produce tagged

PDF.

We plan to integrate important functionality
from existing packages directly into LATEX so that
it is directly available for user and package writers
through standard interfaces. Examples for this are
hyperlinks and colors, as already mentioned, but
there are several other areas we are looking at.

In addition, we plan to provide standard inter-
faces for some important capabilities that are cur-
rently not available at all or only in rudimentary and
ad hoc fashion. An example for this is the hook man-
agement system that is planned for the next LATEX
release in fall this year.

Finally, the list contains a one-liner about pro-
ducing “tagged PDF”, which hides a huge project—
we will discuss this below.

A focus change—modernize LATEX through
gentle refactoring

When we set out in 1989 to improve LATEX2.09 and
produce a new version (a.k.a. LATEX3) the LATEX
universe was largely defined by the software provided
by Leslie Lamport and a rather small and manageable
number of packages by others. The reason being that
it was not at all easy to build applications on top
of LATEX2.09 and, of course, LATEX was only a few
years in use back then.

When LATEX2ε was released in 1994 it solved
many of the problems we had initially criticized, even
though it wasn’t the system we had envisioned—
one with a clear separation of user, designer and
programmer levels and facilities, which we simply
couldn’t make work with the existing computing
power of those days.

However, LATEX2ε offered a package manage-
ment system with \usepackage, command declara-
tion with optional arguments and other goodies for

Frank Mittelbach and the LATEX Project Team

TUGboat, Volume 41 (2020), No. 2 205

users and package developers and so over time peo-
ple started to provide more and more packages for
LATEX that filled the needs of any niche and nowadays
several thousand packages for LATEX are on CTAN.

The increase in the breadth of the software usage
over the years made it more and more unlikely that
producing a standalone LATEX3 next to an existing
LATEX2ε would gain any traction. It would naturally
start out with a very limited scope (because many
existing packages would not work with it) and would
therefore be unsuitable for most serious usage. But
that in turn would mean that as kernel developers
we would not get the necessary feedback that ensures
that the provided features are meeting the needs of
the users and as a package developer there would
be no incentive to provide new packages for a new
system that isn’t widely used—the usual chicken
and egg problem.

We have therefore decided that there will be no
separate LATEX3 product in parallel to an existing
LATEX2ε. Instead, we will approach the modern-
ization through some gentle refactoring of LATEX to
reach the same target, but in smaller steps.

If you look back at the history outlined earlier,
you will see that this journey has already started in
2015 with the new bug-fix policy and the rollback
mechanism, which was then followed by the switch
to UTF-8 to keep LATEX relevant.

The strategy we are following here can be out-
lined in a number of main bullet points:

• Use the L3 programming language to implement
all new kernel code now that it is available;

• Replace existing kernel code (over time);

• Keep focus on reliability and compatibility;

• Collaborate with package writers/maintainers
to ensure compatibility with kernel changes.

An example of our new strategy is the implementa-
tion of a hook management system for LATEX, which
will be introduced in LATEX in the 2020 fall release.

Hook management as an example

In the past LATEX offered just a few heavily used
hooks, for example, \AtBeginDocument. Every other
alteration or addition made by a package was done
by overwriting existing kernel code, leading to all
kinds of known issues.

With the new hook management system, the
LATEX kernel and many packages will get a larger
number of hooks in which other packages can add
code in a controlled manner, avoiding the need for
patching commands. The new system provides stan-
dard interfaces for declaring and using hooks, includ-
ing ways to order code added to hooks by different

package in order to resolve package loading problems,
and plenty more.

The new system is written in the L3 program-
ming language (the source file is lthooks.dtx), but
the interfaces are offered in a way that they can
be used in all packages, i.e., they do not require
the package to be written in expl3 and thus can be
retrofitted into updates of legacy packages easily.

The individual hooks provided by the kernel
in the first release replace ad hoc solutions in spe-
cific areas as provided by packages such as atbegshi,
everyshi, atveryend, etoolbox, filehook and others. In
future releases, more parts of LATEX will see hooks
added.

Thanks to the LATEX development format con-
cept mentioned above, the new hook management
code is already available for testing to anybody inter-
ested—which we strongly encourage. As any change
to LATEX will inevitably have ripple effects which
need sorting out, such pre-testing is an important
part of the overall strategy, to resolve as many prob-
lems and borderline cases as possible before new code
shows up in the main release.

For the same reason the LATEX team is actively
checking across the huge set of packages supplied in
TEX distributions for possible conflicts and working
with other developers and maintainers if updates are
necessary due to upcoming LATEX kernel changes. In
this particular instance, it was necessary for a handful
of packages that patched into existing internal LATEX
commands in places that have been unavoidably
changed to support the new hooks.

4 The tagged PDF project

This project is the LATEX team’s answer to the need
for preparing LATEX to uses other than printing on
paper. The main goals of this project can be sum-
marized as follows:

• Provide functionality to automatically produce
structured PDF, without the need for user inter-
vention or post-processing;

• Provide the necessary interfaces for producing
PDF enhanced by features such as “alterna-
tive text” (to comply with standards such as
PDF/UA).

While the project focusses on PDF as the pri-
mary output format, the functionality that needs to
be developed will be equally applicable when target-
ing other output formats that require structured data
to be present, e.g., HTML, XML, and new formats
such as HINT currently being developed [16, 17].

Quo vadis LATEX(3) Team—A look back and at the upcoming years

206 TUGboat, Volume 41 (2020), No. 2

Background and project status

There has been groundbreaking work done by Ross
Moore and others [10, 14, 11] in the last years in the
quest for enabling LATEX to produce “accessible” or
more generally “structured and enhanced” PDF.

The unfortunate problem which all these at-
tempts have run into is that it is next to impossible
to patch current LATEX and all needed packages and
still obtain reliable and stable results.

A system based on patches is by its nature very
fragile, because any change in the patched code will
break the system—which will happen regularly if
significant patching is needed, as is the case here.
In addition, all solutions to date need to enforce
severe restrictions on the document content and even
then require the user to do serious manual work—
largely because of missing machinery and interfaces
in LATEX.

Our plans are therefore to continue learning from
this prior work and provide the necessary interfaces
directly in LATEX, so that fragile and incompatible
patching is no longer necessary. Some of our initial
work in this regard is documented in [15, 1].

What we have undertaken so far with respect
to the “Tagged PDF project” is to produce a fea-
sibility study and develop a detailed project plan
for reaching the project goals. This is a multi-year
undertaking split into six phases and how long it will
take will depend in part on the financial backing for
the project, i.e., it depends on how much of the work
has to be done in our spare time and how much of
the development work is financed by sponsors, so
that we can have some people work full time on the
necessary work.

We are therefore pleased to be able to say that
Adobe is sponsoring a fair portion of the estimated
project costs, though we hope to attract further
industry sponsors and organizations interested in the
subject, in order to keep the timeline at a reasonable
length.

Project phases and timeline

The project is tentatively divided into six phases
progressing in parallel to the LATEX release cycle;
that is, each phase is expected to require one or
more LATEX releases, depending on how much time
we can devote to the necessary work.

The deliverables of each phase are expected to
be directly applicable to LATEX users (and developers)
so that we can get immediate feedback but also make
tangible progress.

Overall, depending on the available financial
support, the project timeline is expected to take
between three and five years.

Phase I—Prepare the ground

This phase is already well under way and one impor-
tant deliverable is the introduction of a general hook
management system, discussed earlier.

Phase II—Provide tagging of simple
documents

The main goal of phase II is to provide automatic
tagging of simple documents, excluding more com-
plicated structures such as mathematics and tables.
In this phase workarounds are needed for code that
will be adjusted later.

This is delivered as a prototype implementation
in form of an add-on package.

Phase III—Remove the workarounds
needed for tagging

The main goal of phase III is to extend the coverage
of automatic tagging and to remove workarounds
that were initially necessary to provide a working
prototype.

Phase IV—Make basic tagging and
hyperlinking available

The main goal of phase IV is to incorporate all the
code currently in the prototype packages into the
kernel itself. This needs to be done very carefully
and cautiously as there should be no negative impact
for users processing legacy documents. This is why
we expect to need at least a full release cycle for this.

Phase V—Extend the tagging capabilities

With basic tagging available the focus of phase V lies
in providing extended support for tagging by adding
tables and formulas to the supported elements.

Furthermore, interfaces for specifying alternate
text will be developed and added to all relevant
elements.

Phase VI—Handle standards

Finally, phase VI will focus on providing additional
support for the relevant PDF standards (as far as
this is possible using LATEX directly, without post-
processing the resulting PDF), and adding kernel
support for outlines and associated files.

Parallel work

In addition to the six phases (which contain tasks
that are largely understood from a technical per-
spective) there are a number of tasks that require
research. These will be carried out in parallel to the
other work.

Depending on their outcome the structure of the
later phases might need some alteration or extension.

Frank Mittelbach and the LATEX Project Team

TUGboat, Volume 41 (2020), No. 2 207

5 Stay tuned

Clearly this article provides only a short glimpse of
our plans for the immediate and mid-term future.
The feasibility study for the tagged PDF project and
its implications and dependencies, for example, is
a forty page document and touched upon in this
document in a few sentences. In the near future we
intend to publish this study and more details both
on the plans and on our intermediate results.

As a first result from Phase I, you can already
now take a look at the new hook management system
and provide your feedback for consideration before it
get officially introduced in the fall release of LATEX.
With an up-to-date LATEX installation the relevant
commands are:

texdoc lthooks-doc (for documentation)
pdflatex-dev yourfile (for testing)

References

[1] U. Fischer. Creating accessible pdfs
with LATEX. TUGboat 41(1):26–28, 2020.
https://tug.org/TUGboat/tb41-1/

tb127fischer-accessible.pdf

[2] M. Goossens, F. Mittelbach, A. Samarin. The
LATEX Companion. Addison-Wesley, Reading,
MA, USA, 1994.

[3] L. Lamport. LATEX: A Document Preparation

System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, second
edition, 1994.

[4] LATEX Project Team. LATEX3 news, 2009–.
https://latex-project.org/news/

latex3-news/.

[5] LATEX Project Team. The latexrelease package,
2018. https://ctan.org/pkg/latexrelease.

[6] LATEX Project Team. LATEX news, issue 30,
October 2019. TUGboat 40(3):251–254,
2019. https://tug.org/TUGboat/tb40-3/

tb126ltnews30.pdf

[7] F. Mittelbach. A rollback concept for
packages and classes. TUGboat 39(2):107–112,
2018. https://tug.org/TUGboat/tb39-2/

tb122mitt-rollback.pdf

[8] F. Mittelbach, W. Robertson, LATEX3 team.
l3build—A modern Lua test suite for TEX
programming. TUGboat 35(3):287–293,
2014. https://tug.org/TUGboat/tb35-3/

tb111mitt-l3build.pdf

[9] F. Mittelbach, R. Schöpf. With LATEX into
the nineties. TUGboat 10(4):681–690, Dec.
1989. https://tug.org/TUGboat/tb10-4/

tb26mitt.pdf

[10] R. Moore. Ongoing efforts to generate “tagged
PDF” using pdfTEX. TUGboat 30(2):170–175,
2009. https://tug.org/TUGboat/tb30-2/

tb95moore.pdf

[11] R. Moore. Implementing PDF standards
for mathematical publishing. TUGboat

39(2):131–135, 2018. https://tug.org/

TUGboat/tb39-2/tb122moore-pdf.pdf

[12] LATEX. Project Team. LATEX news, issue 17.
TUGboat 28(1):24–25, 2007. https://tug.

org/TUGboat/tb28-1/tb88ltnews.pdf

[13] LATEX. Project Team. LATEX3 news, issue 9.
TUGboat 35(1):22–26, 2014. https://tug.

org/TUGboat/tb35-1/tb109l3news.pdf

[14] C. V. Radhakrishnan, Hàn Thé̂ Thành, et al.
Generating PDF/X- and PDF/A-compliant
PDFs with pdfTEX— pdfx.sty. TUGboat

36(2):136–142, 2015. https://tug.org/

TUGboat/tb36-2/tb113radhakrishnan.pdf

[15] C. Rowley, U. Fischer, F. Mittelbach.
Accessibility in the LATEX kernel—
experiments in Tagged PDF. TUGboat

40(2):157–158, 2019. https://tug.org/

TUGboat/tb40-2/tb125rowley-tagpdf.pdf

[16] M. Ruckert. The design of the HINT file
format. TUGboat 40(2):143–146, 2019.
https://tug.org/TUGboat/tb40-2/

tb125ruckert-hint.pdf

[17] M. Ruckert. The HINT project: Status and
open questions. TUGboat 41(2):208–211,
2020. https://tug.org/TUGboat/tb41-2/

tb128ruckert-hint.pdf

⋄ Frank Mittelbach and
the LATEX Project Team

Mainz, Germany
frank.mittelbach (at)

latex-project dot org

https://www.latex-project.org

Quo vadis LATEX(3) Team—A look back and at the upcoming years

