
TUGboat, Volume 39 (2018), No. 2 117

Supporting color and graphics in expl3

Joseph Wright

1 Introduction

The expl3 language has grown over the past decade
to cover a wide range of programming tasks [4]. How-
ever, at present there are a number of areas where
expl3 offers little or no ‘core’ support and which will
need functionality at this level. Here, I’ll be focussing
on one in particular: color and graphics support.

In the classical LATEX 2ε setup, the picture

environment along with the packages graphics [5]
and color provide the basis for this area. To allow
driver-dependent operations, a set of definition files is
loaded by graphics to map user operations to driver-
specific instructions. Nowadays, these are managed
by the LATEX team in the bundle graphics-def [2].

In addition to this core support, a number of
well-established contributed packages offer significant
additional features. Particularly notable here are
xcolor [1], which allows user-friendly mixing of colors,
and TikZ/pgf [6], an extremely rich and versatile
system for the programmatic creation of graphics.

Here, I will look at recent efforts to begin provid-
ing a similar level of overall functionality via expl3.
Central to these efforts is the availability of a fast,
expandable and accurate software floating-point unit
(FPU) within expl3. This provides a base on which
many graphics-related functions can build: calcula-
tions are a core part of many image-related functions.

2 The driver layer

Unlike the LATEX 2ε situation, where the graphics and
color driver code is managed (somewhat) separately
from the kernel, the expl3 versions are part of the core
distribution. Development of the driver code in expl3
has been informed by recent efforts to standardise
the LATEX 2ε versions, and vice versa.

As new features are added to expl3 which require
driver support, the driver layer is being adjusted
to match. This means that unlike in LATEX 2ε, for
expl3 there should be a single set of definitive driver
files, supported by the team and usable by (and
documented for) others.

3 Colo(u)r

The LATEX 2ε (required) package color provides a
base interface for using pre-defined colors. However,
one of the most common ways to use a color is to
describe it as a mix of base colors: red, green and
blue, or cyan, magenta, yellow and black. The xcolor
package provides a convenient ‘expression’ interface
for creating mixtures: \color{red!50!blue}.

Supporting this mixing, conversion between dif-
ferent color models, and other features such as spot
colors, are all (largely) covered in the experimental
l3color package [3]. Using the LATEX3 FPU makes
much of the core support very easy to implement:
the various pieces of mathematics can be expressed
directly, rather than requiring complex dimension
shuffling.

At present, the nature of input in l3color is lim-
ited to the ‘simple’ color expressions defined by xcolor:
feedback on what is helpful to end users would be
very welcome.

4 Image inclusion

At present, expl3 support for image inclusion is only
ready at the driver level. Implementing a code-level
set of \image_... functions is on the ‘to do’ list,
and is likely straightforward.

5 Drawing

Whilst the picture environment of the LATEX kernel
does provide a way to create simple graphical ele-
ments, today perhaps the most powerful tool for this
task is TikZ/pgf. Reimplementing all of the latter
may seem excessive, but there are several reasons
to explore this. First, a core aim of expl3/LATEX3
work is to eventually provide a full set of features for
supporting document preparation, certainly provid-
ing code-level tools for all common tasks. Coupled
to this, an expl3 implementation will have API con-
sistency with the rest of the code: mixing TikZ and
expl3 can be tricky. We are also able to use existing
expl3 tools in the implementation and usage. Finally,
there is the potential offered by the LATEX3 FPU:
this avoids using dimensions for floating point work,
and so also avoids the Dimension too big issue that
comes up from time-to-time using TikZ.

Much like expl3, pgf is divided into different
layers: these line up as show in Table 1. There is
good alignment, and thus in many ways it is simply
a case of re-creating the macros with new names. Of
course, there is more to do than that: for example,
the use of the LATEX3 FPU means that co-ordinate
expressions are processed expandably by l3draw, with
a knock-on effect in usage. However, as far as possible
the interfaces in l3draw retain the same arguments
as those in pgf.

6 Examples

At the time of writing, l3draw is very much a work
in progress. However, the core idea of constructing
paths is fully implemented. For example, a simple
geometric shape including smoothing joins:

Supporting color and graphics in expl3



118 TUGboat, Volume 39 (2018), No. 2

Table 1: Comparison of TikZ/pgf and l3draw concepts

Layer TikZ/pgf l3draw

System \pgfsys@moveto \driver_draw_moveto:nn

Base \pgfpathmoveto \draw_path_moveto:n

Interface \draw —

\draw_begin:

\draw_path_corner_arc:nn { 4pt } { 4pt }

\draw_path_moveto:n

{ \draw_point_polar:nn { 0 } { 1cm } }

\int_step_inline:nnnn { 72 } { 72 } { 359 }

{

\draw_path_lineto:n

{

\draw_point_polar:nn { #1 } { 1cm }

}

}

\draw_path_close:

\draw_path_use_clear:n { stroke }

\draw_end:

The new code also integrates with existing ideas
such as coffins. Here, we draw a line to the center of
typeset text:

This is text.
\draw_begin:

\draw_path_moveto:n { 0cm , 0cm }

\draw_path_lineto:n { 0cm , 1cm }

\draw_path_use_clear:n { stroke }

\hcoffin_set:Nn \l_tmpa_coffin

{ This~is~text. }

\draw_coffin_use:Nnn \l_tmpa_coffin

{ hc } { vc }

\draw_end:

We can also exploit the expandable nature of
the FPU:

22.72949518869545pt,-17.11517943480897pt

\tl_set:Nx \l_tmpa_tl

{

\draw_point_intersect_circles:nnnnn

{ (0,0) } { 1cm }

{ (sqrt(2),sqrt(3)) } { 1cm }

{ 1 }

}

\tl_to_str:N \l_tmpa_tl

Thus, l3draw is ready for application in expl3
contexts which require drawing. Over time, we ex-
pect to cover essentially the entire API provided
by pgf’s core, plus probably node handling (loaded
by pgf but not technically part of the core of the
bundle).

References

[1] U. Kern. Extending LATEX’s color facilities: the
xcolor package, 2016. ctan.org/pkg/xcolor

[2] LATEX Project. Color and graphics option files,
2018. ctan.org/pkg/graphics-def

[3] LATEX Project. Experimental LATEX3 concepts,
2018. ctan.org/pkg/l3experimental

[4] LATEX Project. The expl3 package and LATEX3
programming, 2018. ctan.org/pkg/expl3

[5] LATEX Project. The graphics bundle, 2018.
ctan.org/pkg/graphics

[6] T. Tantau and C. Feuersänger. TikZ and pgf,
2015. ctan.org/pkg/pgf

� Joseph Wright
LATEX Project
joseph dot wright (at)

morningstar2.co.uk

Joseph Wright


