
Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Through the Looking Glass
. . . and what Alice found there

TUG Conference 2017, Bachotek

Frank Mittelbach
frank.mittelbach@latex-project.org

LATEX3 Project

April 29, 2017



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Time and space

John Tenniel, 1870

“Well, in OUR country,” said
Alice, still panting a little,
“you’d generally get to
somewhere else—if you ran
very fast for a long time, as
we’ve been doing.”

“A slow sort of country!” said
the Queen. “Now, HERE,
you see, it takes all the
running YOU can do, to keep
in the same place. If you want
to get somewhere else, you
must run at least twice as fast
as that!”



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Time and space

Placing figures on pages (general formula)(
pages + figures− 1

figures

)
= ?

Placing figures on pages (one per page maximum)(
pages
figures

)
= ?

Examples (assuming 1 second per quality assessment)
I 16 pages, 9 figures→ 11440 trials→ 3.1 hours
I 90 pages, 28 figures→ 1.548× 1023 trials

→ 4.91× 1015 years



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Time and space

Placing figures on pages (general formula)(
pages + figures− 1

figures

)
= ?

Placing figures on pages (one per page maximum)(
pages
figures

)
= ?

Examples (assuming 1 second per quality assessment)
I 16 pages, 9 figures→ 11440 trials→ 3.1 hours
I 90 pages, 28 figures→ 1.548× 1023 trials

→ 4.91× 1015 years



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Time and space

Placing figures on pages (general formula)(
pages + figures− 1

figures

)
= ?

Placing figures on pages (one per page maximum)(
pages
figures

)
= ?

Examples (assuming 1 second per quality assessment)
I 16 pages, 9 figures→ 11440 trials→ 3.1 hours
I 90 pages, 28 figures→ 1.548× 1023 trials

→ 4.91× 1015 years



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

So what now?

Can it be helped a little?
Takayama 2009



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Defining the problem

Input model

I A sequence of text blocks T = {t1, t2, . . . , tn}
I A sequence of (figure) floats F = {f1, f2, . . . , f`}
I (possibly some more float sequences — ignored for now)

Layout model
I A sequence of spreads S1, S2, . . . , Sk

I with columns/pages (sizes may differ)
I with areas for floats
I constraints for the filling process
I some further auxiliary information



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Defining the problem

Input model

I A sequence of text blocks T = {t1, t2, . . . , tn}
I A sequence of (figure) floats F = {f1, f2, . . . , f`}
I (possibly some more float sequences — ignored for now)

Layout model
I A sequence of spreads S1, S2, . . . , Sk

I with columns/pages (sizes may differ)
I with areas for floats
I constraints for the filling process
I some further auxiliary information



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Defining the problem (continued)

Paginations

I A mapping p : T ∪ F → {1, 2, . . . , k} such that

p(ti) ≤ p(tj) for 1 ≤ i < j ≤ n

p(fi) ≤ p(fj) for 1 ≤ i < j ≤ `

I P is the set of all possible paginations of T ∪ F

Objective function (cost function)
I A function Q : P → <

Optimization task

I We seek: p0 ∈ P such that Q(p0) ≤ Q(p) for all p ∈ P



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Defining the problem (continued)

Paginations

I A mapping p : T ∪ F → {1, 2, . . . , k} such that

p(ti) ≤ p(tj) for 1 ≤ i < j ≤ n

p(fi) ≤ p(fj) for 1 ≤ i < j ≤ `

I P is the set of all possible paginations of T ∪ F

Objective function (cost function)
I A function Q : P → <

Optimization task

I We seek: p0 ∈ P such that Q(p0) ≤ Q(p) for all p ∈ P



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Defining the problem (continued)

Paginations

I A mapping p : T ∪ F → {1, 2, . . . , k} such that

p(ti) ≤ p(tj) for 1 ≤ i < j ≤ n

p(fi) ≤ p(fj) for 1 ≤ i < j ≤ `

I P is the set of all possible paginations of T ∪ F

Objective function (cost function)
I A function Q : P → <

Optimization task

I We seek: p0 ∈ P such that Q(p0) ≤ Q(p) for all p ∈ P



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

What can we do?
(Getting requirements for Q)

Example 1: Make a gut decision
I I.e., look at each pagination (for a second) and decide
I Clearly not workable:

I Already for “Through the Looking Glass” that takes
longer than the current age of the universe

Example 2: Base decision on call-out/float distance
I I.e., how many pages do I need to turn to reach a float

I Linear formula: solvable using dynamic programming
I Quadratic formula: NP-complete as shown by Plass

Example 3: Recto/verso criteria
I E.g., penalize if call-out and float are on the same type of

page
I Again NP-complete as shown by Plass



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

What can we do?
(Getting requirements for Q)

Example 1: Make a gut decision
I I.e., look at each pagination (for a second) and decide
I Clearly not workable:

I Already for “Through the Looking Glass” that takes
longer than the current age of the universe

Example 2: Base decision on call-out/float distance
I I.e., how many pages do I need to turn to reach a float

I Linear formula: solvable using dynamic programming
I Quadratic formula: NP-complete as shown by Plass

Example 3: Recto/verso criteria
I E.g., penalize if call-out and float are on the same type of

page
I Again NP-complete as shown by Plass



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

What can we do?
(Getting requirements for Q)

Example 1: Make a gut decision
I I.e., look at each pagination (for a second) and decide
I Clearly not workable:

I Already for “Through the Looking Glass” that takes
longer than the current age of the universe

Example 2: Base decision on call-out/float distance
I I.e., how many pages do I need to turn to reach a float

I Linear formula: solvable using dynamic programming
I Quadratic formula: NP-complete as shown by Plass

Example 3: Recto/verso criteria
I E.g., penalize if call-out and float are on the same type of

page
I Again NP-complete as shown by Plass



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
When possible?

Problem consists of overlapping subproblems

I Clearly, that’s the case (with sensible subproblems)

Problem exhibits optimal substructure (optimality principle)
I The tricky bit



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
When possible?

Problem consists of overlapping subproblems

I Clearly, that’s the case (with sensible subproblems)

Problem exhibits optimal substructure (optimality principle)
I The tricky bit



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
When possible?

Problem consists of overlapping subproblems

I Clearly, that’s the case (with sensible subproblems)
I We denote with P(Si,...,Sj)

a,b
c,d to mean

I all paginations of text blocks ta, . . . , tb and figures
fc, . . . , fd onto spreads Si, . . . , Sj

Problem exhibits optimal substructure (optimality principle)
I The tricky bit



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
When possible?

Problem consists of overlapping subproblems

I Clearly, that’s the case (with sensible subproblems)
I We denote with P(Si,...,Sj)

a,b
c,d to mean

I all paginations of text blocks ta, . . . , tb and figures
fc, . . . , fd onto spreads Si, . . . , Sj

I Examples:

P(S1,S2)
1,80
1,2 × P(S3,S4)

81,150
3,4 ⊂ P(S1,...,S4)

1,150
1,4

P(S1,...,S3)
1,110
1,2 × P(S4)

111,150
3,4 ⊂ P(S1,...,S4)

1,150
1,4

P(S1,S2)
1,80
1,2 × P(S3)

81,110
∅,∅ ⊂ P(S1,...,S3)

1,110
1,2

Problem exhibits optimal substructure (optimality principle)
I The tricky bit



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
When possible?

Problem consists of overlapping subproblems

I Clearly, that’s the case (with sensible subproblems)
I We denote with P(Si,...,Sj)

a,b
c,d to mean

I all paginations of text blocks ta, . . . , tb and figures
fc, . . . , fd onto spreads Si, . . . , Sj

I Examples:

P(S1,S2)
1,80
1,2 × P(S3,S4)

81,150
3,4 ⊂ P(S1,...,S4)

1,150
1,4

P(S1,...,S3)
1,110
1,2 × P(S4)

111,150
3,4 ⊂ P(S1,...,S4)

1,150
1,4

P(S1,S2)
1,80
1,2 × P(S3)

81,110
∅,∅ ⊂ P(S1,...,S3)

1,110
1,2

Problem exhibits optimal substructure (optimality principle)
I The tricky bit



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
When possible?

Problem consists of overlapping subproblems

I Clearly, that’s the case (with sensible subproblems)
I We denote with P(Si,...,Sj)

a,b
c,d to mean

I all paginations of text blocks ta, . . . , tb and figures
fc, . . . , fd onto spreads Si, . . . , Sj

I Examples:

P(S1,S2)
1,80
1,2 × P(S3,S4)

81,150
3,4 ⊂ P(S1,...,S4)

1,150
1,4

P(S1,...,S3)
1,110
1,2 × P(S4)

111,150
3,4 ⊂ P(S1,...,S4)

1,150
1,4

P(S1,S2)
1,80
1,2 × P(S3)

81,110
∅,∅ ⊂ P(S1,...,S3)

1,110
1,2

Problem exhibits optimal substructure (optimality principle)
I The tricky bit



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
When possible?

Problem consists of overlapping subproblems

I Clearly, that’s the case (with sensible subproblems)

Problem exhibits optimal substructure (optimality principle)
I The tricky bit
I A problem exhibits optimal substructure if

I the optimal solution to the problem incorporates only
optimal solutions to its subproblems;

I the subproblems can be solved independently.

I Now what does this mean?



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
When possible?

Problem consists of overlapping subproblems

I Clearly, that’s the case (with sensible subproblems)

Problem exhibits optimal substructure (optimality principle)
I The tricky bit
I A problem exhibits optimal substructure if

I the optimal solution to the problem incorporates only
optimal solutions to its subproblems;

I the subproblems can be solved independently.

I Now what does this mean?



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Optimality principle

What does it mean?
I Assume we search for p0 with Q(p0) minimal and

p0 ∈ P(S1,...,S4)
1,150
1,4

I Assume further that we find

p0 ∈ P(S1)
1,35
1,1 × P(S2)

36,80
2,2 × P(S3)

81,110
∅,∅ × P(S4)

111,150
3,4

. . . then the optimality principle means that
I p0 (suitably restricted) is also an optimal solution for

P(S1)
1,35
1,1 P(S1,S2)

1,80
1,2 P(S1,...,S3)

1,110
1,2

I and many others, e.g., P(S2,...,S4)
36,150
2,4 etc.



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Optimality principle

What does it mean?
I Assume we search for p0 with Q(p0) minimal and

p0 ∈ P(S1,...,S4)
1,150
1,4

I Assume further that we find

p0 ∈ P(S1)
1,35
1,1 × P(S2)

36,80
2,2 × P(S3)

81,110
∅,∅ × P(S4)

111,150
3,4

. . . then the optimality principle means that
I p0 (suitably restricted) is also an optimal solution for

P(S1)
1,35
1,1 P(S1,S2)

1,80
1,2 P(S1,...,S3)

1,110
1,2

I and many others, e.g., P(S2,...,S4)
36,150
2,4 etc.



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Applying it

If dynamic programming is applicable we can

I solve each subproblem only once
I and remember the result
I construct the optimal solution of a bigger subproblem

by extending and combining smaller subproblems

Example:
I Find the best way to put t1, . . . , tb and f1, . . . , fd onto

spreads S1, . . . , Si:

P(S1,...,Si)
1,b
1,d ⊃ P(S1,...,Si−1)

1,a′

1,c′ × P(Si)
a′+1,b
c′+1,d

...



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Applying it

If dynamic programming is applicable we can

I solve each subproblem only once
I and remember the result
I construct the optimal solution of a bigger subproblem

by extending and combining smaller subproblems

Example:
I Find the best way to put t1, . . . , tb and f1, . . . , fd onto

spreads S1, . . . , Si:

P(S1,...,Si)
1,b
1,d

P(S1,...,Si)
1,b
1,d ⊃ P(S1,...,Si−1)

1,a′

1,c′ × P(Si)
a′+1,b
c′+1,d

...



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Applying it

If dynamic programming is applicable we can

I solve each subproblem only once
I and remember the result
I construct the optimal solution of a bigger subproblem

by extending and combining smaller subproblems

Example:
I Find the best way to put t1, . . . , tb and f1, . . . , fd onto

spreads S1, . . . , Si:

P(S1,...,Si)
1,b
1,d ⊃ P(S1,...,Si−1)

1,a
1,c × P(Si)

a+1,b
c+1,d

P(S1,...,Si)
1,b
1,d ⊃ P(S1,...,Si−1)

1,a′

1,c′ × P(Si)
a′+1,b
c′+1,d

...



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Applying it

If dynamic programming is applicable we can

I solve each subproblem only once
I and remember the result
I construct the optimal solution of a bigger subproblem

by extending and combining smaller subproblems

Example:
I Find the best way to put t1, . . . , tb and f1, . . . , fd onto

spreads S1, . . . , Si:

P(S1,...,Si)
1,b
1,d ⊃ P(S1,...,Si−1)

1,a
1,c × P(Si)

a+1,b
c+1,d

P(S1,...,Si)
1,b
1,d ⊃ P(S1,...,Si−1)

1,a′

1,c′ × P(Si)
a′+1,b
c′+1,d

...



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Applying it

If dynamic programming is applicable we can

I solve each subproblem only once
I and remember the result
I construct the optimal solution of a bigger subproblem

by extending and combining smaller subproblems

Example:
I Find the best way to put t1, . . . , tb and f1, . . . , fd onto

spreads S1, . . . , Si:

P(S1,...,Si)
1,b
1,d ⊃ P(S1,...,Si−1)

1,a
1,c × P(Si)

a+1,b
c+1,d

P(S1,...,Si)
1,b
1,d ⊃ P(S1,...,Si−1)

1,a′

1,c′ × P(Si)
a′+1,b
c′+1,d

...



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Applying it

Example continued:
I In other words, we have

P(S1,...,Si)
1,b
1,d =

⋃
1≤a≤b
1≤c≤d

P(S1,...,Si−1)
1,a
1,c × P(Si)

a+1,b
c+1,d

I So if we know the best way for each

P(S1,...,Si−1)
1,a
1,c

then all we need to do is to calculate all the

P(Si)
a+1,b
c+1,d

and apply Q to determine the best solution.



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Applying it

Example continued:
I In other words, we have

P(S1,...,Si)
1,b
1,d =

⋃
1≤a≤b
1≤c≤d

P(S1,...,Si−1)
1,a
1,c × P(Si)

a+1,b
c+1,d

I So if we know the best way for each

P(S1,...,Si−1)
1,a
1,c

then all we need to do is to calculate all the

P(Si)
a+1,b
c+1,d

and apply Q to determine the best solution.



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Why does it sometimes fail?

Example continued:

I Suppose we have a pagination p = p′ × p′′ with

p ∈ P(S1,...,Si)
1,b
1,d

and p′ ∈ P(S1,...,Si−1)
1,a
1,c p′′ ∈ P(Si)

a+1,b
c+1,d

I Then we need to be able to calculate Q(p) from Q(p′)
and Q(p′′)

I For example: Q(p) = Q(p′) + Q(p′′) + Q̃(P(S1,...,Si−1)
1,a
1,c )

But for the NP-complete cases this is
I not possible as the “quality” depends on where the

call-out is (within p′) in relation to the float (in p′′)
I not depending on a fixed value based on P(S1,...,Si−1)

1,a
1,c



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Why does it sometimes fail?

Example continued:

I Suppose we have a pagination p = p′ × p′′ with

p ∈ P(S1,...,Si)
1,b
1,d

and p′ ∈ P(S1,...,Si−1)
1,a
1,c p′′ ∈ P(Si)

a+1,b
c+1,d

I Then we need to be able to calculate Q(p) from Q(p′)
and Q(p′′)

I For example: Q(p) = Q(p′) + Q(p′′) + Q̃(P(S1,...,Si−1)
1,a
1,c )

But for the NP-complete cases this is
I not possible as the “quality” depends on where the

call-out is (within p′) in relation to the float (in p′′)
I not depending on a fixed value based on P(S1,...,Si−1)

1,a
1,c



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The dynamic programming methodology
Why does it sometimes fail?

Example continued:

I Suppose we have a pagination p = p′ × p′′ with

p ∈ P(S1,...,Si)
1,b
1,d

and p′ ∈ P(S1,...,Si−1)
1,a
1,c p′′ ∈ P(Si)

a+1,b
c+1,d

I Then we need to be able to calculate Q(p) from Q(p′)
and Q(p′′)

I For example: Q(p) = Q(p′) + Q(p′′) + Q̃(P(S1,...,Si−1)
1,a
1,c )

But for the NP-complete cases this is
I not possible as the “quality” depends on where the

call-out is (within p′) in relation to the float (in p′′)
I not depending on a fixed value based on P(S1,...,Si−1)

1,a
1,c



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The basic algorithm
(no floats)

Start up

I Let A = {a0, a1, a2, . . .} be elements from the text stream
that have been identified as places where we can end a
spread (plus info how we got there)

I Initially this contains just a0 (start of document)

Main loop through all elements t∗ ∈ T

I Check if we can successfully build a spread from one or
more a ∈ A to the current t∗

I For each new spread that ends, check which path gives
the best result (according to Q) and add that one as a
new element to A

I (here we need the optimality principle)

I Whenever some ai ∈ A is too far away from t∗ (overfull
spread) remove it from A



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The basic algorithm
(no floats)

Start up

I Let A = {a0, a1, a2, . . .} be elements from the text stream
that have been identified as places where we can end a
spread (plus info how we got there)

I Initially this contains just a0 (start of document)

Main loop through all elements t∗ ∈ T

I Check if we can successfully build a spread from one or
more a ∈ A to the current t∗

I For each new spread that ends, check which path gives
the best result (according to Q) and add that one as a
new element to A

I (here we need the optimality principle)

I Whenever some ai ∈ A is too far away from t∗ (overfull
spread) remove it from A



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The basic algorithm continued
(no floats)

Finishing off

I Eventually, we will reach the end of the document . . .
I . . . then work from the best solution backwards through

all the elements we passed through
I That defines our optimal solution

Complexity
I The outer loop has n elements
I The inner loop is the size of A which is

I bounded by a constant if all spreads have the same
structure
→ O(c · n) = O(n)

I otherwise it can be at most n
→ O(n2)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The basic algorithm continued
(no floats)

Finishing off

I Eventually, we will reach the end of the document . . .
I . . . then work from the best solution backwards through

all the elements we passed through
I That defines our optimal solution

Complexity
I The outer loop has n elements
I The inner loop is the size of A which is

I bounded by a constant if all spreads have the same
structure
→ O(c · n) = O(n)

I otherwise it can be at most n
→ O(n2)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The extended algorithm
(with floats)

When starting up

I Compile info about each call-out

When t∗ is identified as a new endpoint for a spread
I Prepare a list of all possible float placements for the next

spread (conservative)
I Add a new a ∈ A for each of them

When finishing off

I We need to deal with the case of unplaced floats
I We can, for example, add them on further spreads

(with some extra costs)
I or drop them as “non-solutions”



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The extended algorithm
(with floats)

When starting up

I Compile info about each call-out

When t∗ is identified as a new endpoint for a spread
I Prepare a list of all possible float placements for the next

spread (conservative)
I Add a new a ∈ A for each of them

When finishing off

I We need to deal with the case of unplaced floats
I We can, for example, add them on further spreads

(with some extra costs)
I or drop them as “non-solutions”



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The extended algorithm
(with floats)

When starting up

I Compile info about each call-out

When t∗ is identified as a new endpoint for a spread
I Prepare a list of all possible float placements for the next

spread (conservative)
I Add a new a ∈ A for each of them

When finishing off

I We need to deal with the case of unplaced floats
I We can, for example, add them on further spreads

(with some extra costs)
I or drop them as “non-solutions”



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

The extended algorithm continued
(with floats)

Complexity
I The outer loop has n elements
I The inner loop is the size of A:

I The number of elements ending in a different t∗ is either
I O(n) for fixed spread structure
I or O(n2) otherwise

I For each new t∗ we compile the set of all potentially
possible float placements for the next spread

I This number is bounded by a constant (available space!)
I Any of the available floats might be the first

I Thus
I If the spread all have the same structure→ O(n · `)
I otherwise→ O(n2 · `)

I Floats add a complexity factor in the size of their stream!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules

Rule types
I Absolute rule: placement not allowed if violated
I Preference rule: placement is (un)favorable

Call-out / float relations
I Floats are placed in order of their first/main call-out

I Different streams are (usually) independent
I A float must appear after its call-out . . .

I same or later column (usual approach)
I strictly after (fairly restrictive)
I same page or spread or later (difficult with greedy

algorithms; involves reformatting)
I must be placed in their subsection (dangerous)
I must be visible from the call-out (very dangerous)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules

Rule types
I Absolute rule: placement not allowed if violated
I Preference rule: placement is (un)favorable

Call-out / float relations
I Floats are placed in order of their first/main call-out

I Different streams are (usually) independent
I A float must appear after its call-out . . .

I same or later column (usual approach)
I strictly after (fairly restrictive)
I same page or spread or later (difficult with greedy

algorithms; involves reformatting)
I must be placed in their subsection (dangerous)
I must be visible from the call-out (very dangerous)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules

Rule types
I Absolute rule: placement not allowed if violated
I Preference rule: placement is (un)favorable

Call-out / float relations
I Floats are placed in order of their first/main call-out

I Different streams are (usually) independent
I A float must appear after its call-out . . .

I same or later column (usual approach)
I strictly after (fairly restrictive)
I same page or spread or later (difficult with greedy

algorithms; involves reformatting)
I must be placed in their subsection (dangerous)
I must be visible from the call-out (very dangerous)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules

Rule types
I Absolute rule: placement not allowed if violated
I Preference rule: placement is (un)favorable

Call-out / float relations
I Floats are placed in order of their first/main call-out

I Different streams are (usually) independent
I A float must appear after its call-out . . .

I same or later column (usual approach)
I strictly after (fairly restrictive)
I same page or spread or later (difficult with greedy

algorithms; involves reformatting)
I must be placed in their subsection (dangerous)
I must be visible from the call-out (very dangerous)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules

Rule types
I Absolute rule: placement not allowed if violated
I Preference rule: placement is (un)favorable

Call-out / float relations
I Floats are placed in order of their first/main call-out

I Different streams are (usually) independent
I A float must appear after its call-out . . .

I same or later column (usual approach)
I strictly after (fairly restrictive)
I same page or spread or later (difficult with greedy

algorithms; involves reformatting)
I must be placed in their subsection (dangerous)
I must be visible from the call-out (very dangerous)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules

Rule types
I Absolute rule: placement not allowed if violated
I Preference rule: placement is (un)favorable

Call-out / float relations
I Floats are placed in order of their first/main call-out

I Different streams are (usually) independent
I A float must appear after its call-out . . .

I same or later column (usual approach)
I strictly after (fairly restrictive)
I same page or spread or later (difficult with greedy

algorithms; involves reformatting)
I must be placed in their subsection (dangerous)
I must be visible from the call-out (very dangerous)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules

Rule types
I Absolute rule: placement not allowed if violated
I Preference rule: placement is (un)favorable

Call-out / float relations
I Floats are placed in order of their first/main call-out

I Different streams are (usually) independent
I A float must appear after its call-out . . .

I same or later column (usual approach)
I strictly after (fairly restrictive)
I same page or spread or later (difficult with greedy

algorithms; involves reformatting)
I must be placed in their subsection (dangerous)
I must be visible from the call-out (very dangerous)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for placement
I There cannot be more than x floats on a single page
I The top area of a column may receive a maximum of y

floats, the bottom area of z floats
I If more than x% of the space on a column is occupied by

floats then no normal text will appear in that column
I Every column must contain a minimum of x% of text
I All the floats are stacked vertically vertically at the top

of a page; alternative: they can appear at the top or
bottom (but not in both places)

I Floats can be horizontally placed if they are visually
compatible (e.g., have identical heights); might also be
requested for floats placed in adjacent columns



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for placement
I There cannot be more than x floats on a single page
I The top area of a column may receive a maximum of y

floats, the bottom area of z floats
I If more than x% of the space on a column is occupied by

floats then no normal text will appear in that column
I Every column must contain a minimum of x% of text
I All the floats are stacked vertically vertically at the top

of a page; alternative: they can appear at the top or
bottom (but not in both places)

I Floats can be horizontally placed if they are visually
compatible (e.g., have identical heights); might also be
requested for floats placed in adjacent columns



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for placement
I There cannot be more than x floats on a single page
I The top area of a column may receive a maximum of y

floats, the bottom area of z floats
I If more than x% of the space on a column is occupied by

floats then no normal text will appear in that column
I Every column must contain a minimum of x% of text
I All the floats are stacked vertically vertically at the top

of a page; alternative: they can appear at the top or
bottom (but not in both places)

I Floats can be horizontally placed if they are visually
compatible (e.g., have identical heights); might also be
requested for floats placed in adjacent columns



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for placement
I There cannot be more than x floats on a single page
I The top area of a column may receive a maximum of y

floats, the bottom area of z floats
I If more than x% of the space on a column is occupied by

floats then no normal text will appear in that column
I Every column must contain a minimum of x% of text
I All the floats are stacked vertically vertically at the top

of a page; alternative: they can appear at the top or
bottom (but not in both places)

I Floats can be horizontally placed if they are visually
compatible (e.g., have identical heights); might also be
requested for floats placed in adjacent columns



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for the inner structure of a float
I Position of caption/legend based on float size
I Position of caption/legend based on placement
I Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions)

I Too many unplaced floats
I Distance between call-out and float too large
I Other ideas . . .

I Topic for further research!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for the inner structure of a float
I Position of caption/legend based on float size
I Position of caption/legend based on placement
I Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions)

I Too many unplaced floats
I Distance between call-out and float too large
I Other ideas . . .

I Topic for further research!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for the inner structure of a float
I Position of caption/legend based on float size
I Position of caption/legend based on placement
I Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions)

I Too many unplaced floats
I But documents may have many call-outs close by

(danger to drop too much)

I Distance between call-out and float too large
I Other ideas . . .

I Topic for further research!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for the inner structure of a float
I Position of caption/legend based on float size
I Position of caption/legend based on placement
I Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions)

I Too many unplaced floats and
x previous columns have no floats allocated

I Distance between call-out and float too large
I Other ideas . . .

I Topic for further research!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for the inner structure of a float
I Position of caption/legend based on float size
I Position of caption/legend based on placement
I Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions)

I Too many unplaced floats and
x previous columns have no floats allocated

I But only if the floats could have placed there
(difficult to check)

I Distance between call-out and float too large
I Other ideas . . .

I Topic for further research!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for the inner structure of a float
I Position of caption/legend based on float size
I Position of caption/legend based on placement
I Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions)

I Too many unplaced floats and
x previous columns have no floats allocated

I Distance between call-out and float too large
I Other ideas . . .

I Topic for further research!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for the inner structure of a float
I Position of caption/legend based on float size
I Position of caption/legend based on placement
I Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions)

I Too many unplaced floats and
x previous columns have no floats allocated

I Distance between call-out and float too large
I Described this way creates dependencies between

subproblems, thus violate the optimality principle
(difficult to implement correctly)

I Other ideas . . .
I Topic for further research!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Float rules (structuring the approach)
Different types of rules, continued

Rules for the inner structure of a float
I Position of caption/legend based on float size
I Position of caption/legend based on placement
I Float size alterations (cropping of graphics, etc.)

Pruning (dropping supposedly bad solutions)

I Too many unplaced floats and
x previous columns have no floats allocated

I Distance between call-out and float too large
I Other ideas . . .

I Topic for further research!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Applying float rules . . .

Evaluate when deciding next float placement
I Pruning:

Evaluate when adding a call-out to a trial placement

I Call-out constraint rules (absolute):



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Applying float rules . . .

Evaluate when deciding next float placement
I Pruning:

I drop as soon as possible
I Absolute rules (for a spread):

I drop if violated
I Preference rules (for a spread):

I add cost charge

Evaluate when adding a call-out to a trial placement

I Call-out constraint rules (absolute):



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Applying float rules . . .

Evaluate when deciding next float placement
I Pruning:

I drop as soon as possible
I Absolute rules (for a spread):

I drop if violated
I Preference rules (for a spread):

I add cost charge

Evaluate when adding a call-out to a trial placement

I Call-out constraint rules (absolute):
I remove a ∈ A if violated

I Call-out constraint rules (preference):
I add cost charge to a ∈ A



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Designs without call-out constraints
(A bit of a horror scenario)

John Tenniel, 1870



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Designs without call-out constraints
(A bit of a horror scenario)

What does this mean?
I No rules that favor a certain region (such as low

distance from the call-out)
I The objective function only implements local aesthetics
I Thus the placement of floats mainly affects the quality

through a better or worse fit of the text blocks

Consequences
I Dynamic programming would still work, as we can

interpret this as the case in which
I all call-outs are at the beginning of the document
I the objective function adds a zero cost for the distance

from the call-out

I But that means that pruning not really possible
(what would be the criteria?)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Designs without call-out constraints
(A bit of a horror scenario)

What does this mean?
I No rules that favor a certain region (such as low

distance from the call-out)
I The objective function only implements local aesthetics
I Thus the placement of floats mainly affects the quality

through a better or worse fit of the text blocks

Consequences
I Dynamic programming would still work, as we can

interpret this as the case in which
I all call-outs are at the beginning of the document
I the objective function adds a zero cost for the distance

from the call-out

I But that means that pruning not really possible
(what would be the criteria?)



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Designs without call-out constraints
Managing the complexity

Just do it externally
I Advantage: fast
I Disadvantage: no interaction with formatting the text

Guiding the placement

I Advantage: interaction with text placement
(while still fairly fast)

I Disadvantage: difficult to control
I More research necessary!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Designs without call-out constraints
Managing the complexity

Just do it externally
I Advantage: fast
I Disadvantage: no interaction with formatting the text

Guiding the placement

I Advantage: interaction with text placement
(while still fairly fast)

I Disadvantage: difficult to control
I More research necessary!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Designs without call-out constraints
Managing the complexity

Just do it externally
I Advantage: fast
I Disadvantage: no interaction with formatting the text

Guiding the placement

I Advantage: interaction with text placement
(while still fairly fast)

I Disadvantage: difficult to control
I More research necessary!



Through the
Looking Glass
. . . and what
Alice found

there

Frank
Mittelbach

Introduction

Dynamic
programming

Algorithms

Aesthetics
only

( )

Mischief managed!

Hope I was able to reveal something new for you.
Thanks all around!

John Tenniel, 1870


	From the looking glass story
	The dynamic programming methodology
	The algorithms
	Aesthetics only

	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	resultado2: 
	hours: 
	minutes: 
	seconds: 
	cronohours: 
	cronominutes: 
	crseconds: 
	day: 
	month: 
	year: 
	button1: 
	button2: 
	separatordate: /
	separatortime: :
	cronobox: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 
	cronobox: 
	cronohours: 
	separatortime: :
	cronominutes: 
	separatortime: :
	crseconds: 


