
248 TUGboat, Volume 35 (2014), No. 3

How to influence the position of float
environments like figure and table in LATEX?

Frank Mittelbach

Abstract

In 2012, a question “How to influence the float place-
ment in LATEX” was asked on TeX.stackexchange [3]
and as there had been many earlier questions around
this topic I decided to treat the topic in some depth
and explain most of the mysteries that the under-
lying mechanism poses to people trying to use it
successfully.

Once my answer appeared on the web, people
asked to see this converted into an article and I fool-
ishly replied “only if this answer ends up becoming
a ‘great’ answer” (gets 100 votes). At the time of
writing this article, the answer stands at 222 votes,
so I had better make good on that promise.

Contents

1 Introduction 248

2 LATEX floats terminology 248
2.1 Float classes 248
2.2 Float areas 248
2.3 Float placement specifiers 248
2.4 Float algorithm parameters 249
2.5 Float reference point 249

3 Basic behavioral rules of LATEX’s
float mechanism 249
3.1 The basic sequence 249
3.2 Detailed placement rules 250
3.3 Emptying the holding queue at the

column or page boundary 250
3.4 Parameters influencing the placement 250

4 Consequences of the algorithm 251
4.1 A float may appear in the document

earlier than its location in the source 251
4.2 Double-column floats are always

deferred first 251
4.3 There is no bottom float area

for double-column floats 252
4.4 All float parameters (normally) restrict

the placement possibilities 252
4.5 “Here” just means “here if it fits” . . 252
4.6 Float specifiers do not define an order

of preference 252
4.7 Relation of floats and footnotes . . . 252

5 Documentation of the algorithm 253

6 How to address specific issues 253

6.1 Ensure that floats appear “here” . . 253
6.2 Provide a bottom float area for

two-column floats 253
6.3 Ensure that floats are always placed

after their call-out 253
6.4 Prevent floats on certain pages . . . 254
6.5 Implement float barriers 254
6.6 Overwrite placement restrictions . . 254
6.7 Final tuning advice 254

1 Introduction

To answer this question one first has to understand
the basic rules that govern LATEX’s standard place-
ment of floats. Once these are understood, adjust-
ments can be made, for example, by modifying float
parameters, or by adding certain packages that mod-
ify or extend the basic functionality.

2 LATEX floats terminology

2.1 Float classes

Each float in LATEX belongs to a class. By default,
LATEX knows about two classes, viz., figure and table.
Further classes can be added by a document class or
by packages. The class a float belongs to influences
certain aspects of the float positioning, such as its
default placement specification (if not overridden on
the float itself).

One important property of the float placement
algorithm is that LATEX never violates the order of
placement within a class of floats. E.g., if you have
figure 1, table 1, figure 2 in a document, then figure 1
will always be placed before figure 2. However, table 1
(belonging to a different float class) will be placed
independently and hence can appear before, after, or
between the figures.

2.2 Float areas

LATEX knows about two float areas within a column
where it can place floats: the top area and the bottom
area of the column. In two-column layout, it also
knows about a top area spanning the two columns.
There is no bottom area for page-wide floats in two-
column mode.

In addition, LATEX can make float columns and
float pages, i.e., columns or pages which contain only
floats. Finally, LATEX can place floats in-line into the
text (but only if so directed on the individual float).

2.3 Float placement specifiers

To direct a float to be placed into one of these areas,
a float placement specifier can be provided as an
optional argument to the float. If no such optional
argument is given then a default placement specifier
is used (which depends on the float class as mentioned

Frank Mittelbach

TUGboat, Volume 35 (2014), No. 3 249

above but usually allows the float to be placed in all
areas if not subject to other restrictions).

A float placement specifier can consist of the
following characters in any order:

! indicates that some of the restrictions that nor-
mally apply should be ignored (discussed later)

h indicates that the float is allowed to be placed
in-line (“here”)

t indicates that the float is allowed to go into a
top area

b indicates that the float is allowed to go into a
bottom area

p indicates that the float is allowed to go on a
float page or column area

The order in which these characters are put in
the optional argument does not influence how the
algorithm tries to place the float! The precise order
is discussed in section 3.2. This is one of the common
misunderstandings, for instance when people think
that bt means that the bottom area should be tried
first.

However, if a letter is not present then the cor-
responding area will not be tried at all.

2.4 Float algorithm parameters

There are about 20 parameters that influence the
placement. Basically they define

• how many floats can go into a certain area,

• how big a float area can become,

• how much text there has to be on a page (in
other words, how much the top and bottom float
areas can occupy), and

• how much space will be inserted

– between consecutive floats in an area and

– between the float area and the text above
or below it.

2.5 Float reference point

A point in the document that references the float
(e.g., “see figure X”) is called a “call-out” and the
float body should be placed close to the (main) call-
out, as its placement in the document affects the
placement of the float in the output, because it de-
termines when LATEX sees the float for the first time.
It’s important to understand that if a float is placed
in the middle of a paragraph, the reference point for
the algorithm is the next line break, or page break,
in the paragraph that follows the actual placement
in the source.

For technical and practical reasons it is usually
best to place all floats between paragraphs (i.e., after
the paragraph with the call-out), even if that makes
the call-out and reference point slightly disagree.

3 Basic behavioral rules of LATEX’s
float mechanism

With this knowledge, we are now ready to delve into
the algorithm’s behavior.

First we have to understand that all of LATEX’s
typesetting algorithms are designed to avoid any
sort of backtracking. This means that LATEX reads
through the document source, formats what it finds
and (more or less) immediately typesets it. The rea-
sons for this design choice were to limit complexity
(which is still quite high) and also to maintain rea-
sonable speed (remember that this is from the early
eighties).

For floats, this means that the algorithm is
greedy, i.e., the moment it encounters a float it will
immediately try to place it and, if it succeeds, it will
never change its decision. This means that it may
choose a solution that could be deemed inferior in
light of data received later on.

For example, if a figure is allowed to go to the
top or bottom area, LATEX may decide to place this
figure in the top area. If this figure is followed by two
tables which are only allowed to go to the top, these
tables may not fit anymore. A solution that could
have worked in this case (but wasn’t tried) would
have been to place the figure in the bottom area and
the two tables in the top area.

3.1 The basic sequence

So here is the basic sequence the algorithm runs
through:

• If a float is encountered, LATEX attempts to place
it immediately according to its rules (detailed
later);

• if this succeeds, the float is placed and that
decision is never changed;

• if this does not succeed, then LATEX places the
float into a holding queue to be reconsidered
when the next page is started (but not earlier).

• Once a page has finished, LATEX examines this
holding queue and tries to empty it as best as
possible. For this it will first try to generate
as many float pages as possible (in the hope
of getting floats off the queue). Once this pos-
sibility is exhausted, it will next try to place
the remaining floats into top and bottom areas.
It looks at all the remaining floats and either
places them or defers them to a later page (i.e.,
adding them once more to the holding queue).

• After that, it starts processing document ma-
terial for this page. In the process, it may en-
counter further floats.

• If the end of the document has been reached or
if a \clearpage is encountered, LATEX starts a

How to influence the position of float environments like figure and table in LATEX?

250 TUGboat, Volume 35 (2014), No. 3

new page, relaxes all restrictive float conditions,
and outputs all floats in the holding queue by
placing them on float page(s).

In two-column mode the same algorithm is used,
except that it works on the level of columns, e.g.,
when a column has finished LATEX will look at the
holding queue and generate float columns, etc.

3.2 Detailed placement rules

Whenever LATEX encounters a float environment in
the source, it will first look at the holding queue to
check if there is already a float of the same class
in the queue. If that happens to be the case, no
placement is allowed and the float immediately goes
into the holding queue.

If not, LATEX looks at the float placement spec-
ifier for this float, either the explicit one in the op-
tional argument or the default one from the float
class. The default per float class is set in the doc-
ument class file (e.g., article.cls) and very often
resolves to tbp, but this is not guaranteed.

• If the specifier contains a !, the algorithm will
ignore any restrictions related either to the num-
ber of floats that can be put into an area or the
maximum size an area can occupy. Otherwise
the restrictions defined by the parameters apply.

• As a next step it will check if h has been speci-
fied.

• If so, it will try to place the float right where
it was encountered. If this works, i.e., if there
is enough space, then it will be placed and pro-
cessing of that float ends.

• If not, it will look next for t and if that has
been specified the algorithm will try to place
the float in the top area. If there is no other
restriction that prevents this, then the float is
placed there and float processing stops.

• If not it will finally check if b is present and, if
so, it will try to place the float into the bottom
area (again obeying any restrictions that apply
if ! wasn’t given).

• If that doesn’t work either or is not permitted
because the specifier wasn’t given, the float is
added to the holding queue.

• A p specifier (if present) is not used during the
above process. It will only be looked at when
the holding queue is being emptied at the next
page or column boundary.

This ends the processing when encountering a float
in the document.

3.3 Emptying the holding queue at the
column or page boundary

After a column or page has been finished, LATEX
looks at the holding queue and attempts to empty

it out as best as possible. For this it will first try to
build float pages.1

Any floats participating in a float page (or col-
umn) must have a p as a float specifier in its float
placement specification. If not, the float cannot go
on a float page and, in addition, will also prevent any
further deferred float of the same class from being
placed onto the float page!

If the float can go there, it will be marked for
inclusion on the float page, but the processor may
still abort the attempt if the float page will not
get filled “enough” (depending on the parameter
settings for float pages). Only at the very end of the
document, or when a \clearpage has been issued,
are these restrictions lifted, and a float will then be
placed on a float page even if it has no p and would
be the only float on that page.

Creation of float pages continues until the algo-
rithm has no further floats to place or when it fails
to produce a float page due to parameter settings. In
the latter case, all floats that have not been placed
so far, are then considered for inclusion in the top
and bottom areas of the next page (or column).

The process there is the same as the one de-
scribed above, except that

• the h specifier no longer has any meaning (as we
are, by now, far away from the original “here”)
and is therefore ignored,

• and the floats at this time are not coming from
the source document but are taken one after the
other from the holding queue.

Any float that couldn’t be placed is then put back
into the holding queue, so that when LATEX is ready
to look at further textual input from the document
the holding queue may already contain floats. A
consequence of this is that a float encountered in the
document may immediately get deferred just because
an earlier float of the same float class is already on
hold.

3.4 Parameters influencing the placement

There are four counters that control how many floats
can go into areas:

totalnumber (default 3) is the maximum number of
floats on a text column; it is not used for float
pages;

topnumber (default 2) is the maximum number of
floats in the top area;

bottomnumber (default 1) is the maximum number
of floats in the bottom area;

1 In two-column mode LATEX will build float columns
(when finishing a column) and also attempt to generate float
pages when finishing a page. In the remainder of the article
“float page” will denote either depending on the context.

Frank Mittelbach

TUGboat, Volume 35 (2014), No. 3 251

dbltopnumber (default 2) is the maximum number
of full-width floats in two-column mode going
above the text columns.

The size of the areas are controlled through pa-
rameters (to be changed with \renewcommand) that
define the maximum (or minimum) size of the area,
expressed as a fraction of the page height:

\topfraction (default 0.7) maximum size of the
top area

\bottomfraction (default 0.3) maximum size of the
bottom area

\dbltopfraction (default 0.7) maximum size of the
top area for double-column floats

\textfraction (default 0.2) minimum size of the
text area, i.e., the area that must not be occu-
pied by floats

The space that separates floats within an area, as
well as between float areas and text areas, is defined
through the following parameters (all of which are
rubber lengths, i.e., can contain some stretch or
shrink components). Their defaults depend on the
document font size and change when class options
like 11pt or 12pt are used. We show only the 10pt
defaults:

\floatsep (default 12pt plus 2pt minus 2pt) the
separation between floats in top or bottom areas

\dblfloatsep (default 12pt plus 2pt minus 2pt) the
separation between double-column floats on two-
column pages

\textfloatsep (default 20pt plus 2pt minus 4pt)
the separation between top or bottom float area
and the text area

\dbltextfloatsep (default 20pt plus 2pt minus
4pt) the analog of \textfloatsep for two-
column floats

For in-line floats (that have been placed “here”) the
separation to the surrounding text is controlled by

\intextsep (default 12pt plus 2pt minus 2pt)

In the case of float pages or float columns (i.e.,
a page or a column of a page containing only floats)
parameters like \topfraction etc. do not apply. In-
stead the creation of them is controlled through

\floatpagefraction (default 0.5) minimum part of
the page (or column) that needs to be occupied
by floats to be allowed to form a float page (or
column).

4 Consequences of the algorithm

4.1 A float may appear in the document
earlier than its location in the source

The placement of the float environment in the source
determines the earliest point where it can appear in

the final document. It may move visually backward
to some degree as it may be placed in the top area
on the current page; see section 6.3 on how to change
this. It can, however, not end up on an earlier page
than the surrounding text due to the fact that LATEX
does no backtracking and the earlier pages have
already been typeset.

Thus normally a float is placed in the source
near its first call-out (i.e., text like “see figure 5”)
because this will ensure that the float appears either
on the same page as this text or on a later page.
However, in some situations you may want to place
a float on the preceding page (if that page is still
visible from the call-out). This is possible only by
moving the float to an earlier position in the source.

4.2 Double-column floats are always
deferred first

When LATEX encounters a page-wide float environ-
ment (indicated by a * at the end of the environment
name, e.g., figure*) in two-column mode, it imme-
diately moves that float to the deferred queue. The
reason for this behavior again lies in the “greedy”
behavior of its algorithm: if LATEX is currently as-
sembling the second column of that page, the first
column has already been assembled and stored away;
recall that because LATEX does not backtrack there
is no way to fit the float on the current page. To
keep the algorithm simple, it does the same even if
working on the first column (where it could in theory
do better even without backtracking).

Thus, in order to place such a float onto the
current page, one has to manually move it to an
earlier place in the source — before the start of the
current page. If this is done, obviously any further
change in the document could make this adjustment
obsolete; hence, such adjustments are best done (if
at all) only at the very last stage of document pro-
duction — when all material has been written and
the focus is on fine-tuning the visual appearance.

Also note that the base algorithm has a bug2

in this area: it maintains two independent holding
queues: one for single-column and one for double-
column floats. As a result the float order is not
necessarily preserved and floats may get typeset out
of sequence. If this happens one either has to man-
ually move the double-column float to an earlier
(or later) place in the document or load the fixltx2e
package that implements a correction for this issue.

2 As this is the documented behavior in the LATEX man-
ual [1] it is perhaps more correctly called an undesired feature
than a bug.

How to influence the position of float environments like figure and table in LATEX?

252 TUGboat, Volume 35 (2014), No. 3

4.3 There is no bottom float area for
double-column floats

This isn’t so much a consequence of the algorithm
but rather a fact about its implementation. For
double-column floats the only possible placements
offered are the top area or a float page. Thus if
somebody adds an h or a b float placement specifier
to such a float it simply gets ignored. As a special
important case {figure*}[b] implies that this float
will not get typeset at all until either a \clearpage

is encountered or the end of the document is reached.

4.4 All float parameters (normally) restrict
the placement possibilities

This may be obvious but it is worth repeating: any
float parameter defines a restriction on LATEX’s abil-
ity to place the floats. How much of a restriction
depends on the setting: there is always a way to set
a parameter in such a way that it does not affect
the placement at all. Unfortunately, in doing so one
invites rather poor-looking placements.

By default LATEX has settings that are fairly
liberal. For example, for a float page to be accepted
the float(s) must occupy at least half of the available
page. Expressed differently, this means that such a
page is allowed to be half empty (which is certainly
not the best possible placement in most cases).

What often happens is that users try to improve
such settings and then get surprised when suddenly
all floats pile up at the end of the document. To
stay with this example: if one changes the parameter
\floatpagefraction to require, say, 0.8 of the float
page, a float that occupies about 0.75 of the page
will not be allowed to form a float page on its own.
Thus, if there isn’t another float that could be added
and actually fits in the remaining space, the float
will get deferred and with it all other floats of the
same class. But, even worse, this specific float is
too big to go into the next top area as well because
there the default maximum permissible area is 0.7
(from \topfraction). As a result all your floats stay
deferred until the next \clearpage.

For this reason it is best not to meddle with the
parameters while writing a document or at least not
to do so in a way that makes it more difficult for
the algorithm to place a float close to its call-out.
For proof-reading it is far more important to have
a figure next to the place it is referenced then to
avoid half-empty pages. Possibilities for fine-tuning
an otherwise finished document are discussed below.

Another conclusion to draw here is that there are
dependencies between some of the float parameters; it
is important to take these dependencies into account
when changing their values.

4.5 “Here” just means “here if it fits”

. . . and often it doesn’t fit. This is somewhat surpris-
ing for many people, but the way the algorithm has
been designed the h specifier is not an unconditional
command. If an unconditional command is needed,
extension packages such as the float package offer H

as an alternative specifier that really means “here”
(and starts a new page first if necessary).

4.6 Float specifiers do not define an order
of preference

As mentioned above, the algorithm tries to place
floats into available float areas in a well-defined order
that is hard-wired into the algorithm: “here”, “top”,
“bottom” and — on page boundaries — first “page”
and only if that is no longer possible, “top” followed
by “bottom” for the next page.

Thus specifying [bt] does not mean try bottom
first and only then top. It simply means allow this
float to go into top or bottom area (but not onto a
float page) just like [tb] would.

4.7 Relation of floats and footnotes

This is not exactly a consequence of the algorithm but
one of its implementation: Whenever LATEX tries to
decide on a placement for a float (or a \marginpar !)
it has to trigger the output routine to do this. And
as part of this process all footnotes on the page are
removed from their current place in the galley and
are collected together in the \footins box as part
of TEX’s preparation for page production.

But after placing the float (or deferring it) LATEX
then returns the page material to the galley, and
because of TEX’s output routine behavior the galley
has now changed: all the footnotes have been taken
out from their original places. So LATEX has to put
the footnotes back, but it can only place them in a
single place (not knowing the origin anymore). What
it does is reinsert the footnotes (the footnote text
to be precise) at the end of the galley. There are
some good reasons for doing this, one of which is
that LATEX expects that all of the returned material
still fits on the current page.

However, if for some reason a page break is fi-
nally taken at an earlier point then the footnotes will
show up on the wrong page or column. This is a fairly
unlikely scenario and LATEX works hard at making it
a near-impossibility, but if it happens check if there
is a float near the chosen page break and either move
the float or guide the algorithm by using explicit
page breaks. An example of this behavior can be
found in another question on TeX.stackexchange [4].
In fact the particular case discussed in the question
is worth highlighting: Do not place a float directly

Frank Mittelbach

TUGboat, Volume 35 (2014), No. 3 253

after a heading, unless it is a heading that always
starts a page. The reason is that headings normally
form very large objects (as a heading prevents a
page break directly after it). However placing a float
in the middle of this means that the output rou-
tine gets triggered before LATEX makes its decision
where to break and any footnotes get moved into the
wrong place.

5 Documentation of the algorithm

As requested, here is some information on existing
documentation. The algorithm and its implemen-
tation are documented in the file ltoutput.dtx as
part of the LATEX kernel source. This can be type-
set standalone or as part of the whole kernel (i.e.,
by typesetting source2e.tex— ignore the checksum
error if it is still there,3 sorry).

This documentation is an interesting historical
artifact. Parts of it show semi-formatted pseudo-code
which dates back to LATEX 2.09; in other words it is
from the original documentation by Leslie Lamport.
The actual code is documented using doc style and
in parts is more or less properly documented (from
scratch) and dates back to 1994 or thereabouts when
Chris Rowley and myself adjusted and extended the
original algorithm for LATEX 2ε (the current version).
It also fairly openly documents the various issues
with the algorithm and/or its implementation — in
many cases we didn’t dare to alter it because of the
many dependencies and, of course, because of the
danger to screw up too many existing documents
that implicitly rely on the current behavior for good
or ill.4 Near the end you’ll find a list of comments
compiled on the algorithm back then, but there are
also comments, questions, and tasks (?:-) sprinkled
throughout the documentation of the code.

One interesting aspect of this file (that I forgot
all about) is that it contains all the code necessary
to trace the behavior of the algorithm in real life. It
is fairly raw and detailed output and probably for
that reason I didn’t make this publicly available back
then. But even in its current form it does give some
interesting insight into the behavior of the algorithm
and how certain decisions come about.

Thus while writing this article I had second
thoughts and now the most recent distribution of
LATEX (May 2014)5 offers the package fltrace that you

3 But this also means you are running an older release of
LATEX.

4 This is, for example, the reason that the correction of
the issue discussed in section 4.2 was placed into the fixltx2e
package and not made part of the kernel algorithm.

5 If you have an earlier version of LATEX installed, you can
still extract this code yourself, by writing a short installation
file fltrace.ins with the following content:

can load to trace some strange float placement deci-
sions, or simply to understand the algorithm a bit
better. It offers the commands \tracefloats and
\tracefloatsoff to start or stop tracing the algo-
rithm and \tracefloatvals to display the current
values of various float parameters that are discussed
in this article.

As the package is identical to the kernel code
with tracing added, it may or may not work if you
load any other package that manipulates that part
of the kernel code. In such a case your best bet is to
load fltrace first.

6 How to address specific issues

In the final section we discuss a few strategies to cir-
cumvent or resolve common issues. It is by no means
comprehensive and you may find further information
in other publications, e.g., The LATEX Companion [2]
that devotes a whole chapter to the topic of floats.

6.1 Ensure that floats appear “here”

Sometimes it is necessary to ensure that floats appear
in-line at certain points in the document text even
if that results in some partially empty pages. As
discussed above the h specifier doesn’t provide this
functionality but there are extensions that do, such
as the float package which offers an H specifier for
this purpose.

An alternative is the \captionof command
from the caption package that generates a normal
float caption (including its entry in the list of fig-
ures or tables, etc.) but without the need for a
surrounding float environment.

6.2 Provide a bottom float area for
two-column floats

As discussed above, the standard algorithm doesn’t
support double-column floats at the bottom of pages.
This missing functionality is added, except for the
first page6, if you load the stfloats package.

6.3 Ensure that floats are always placed
after their call-out

By default the LATEX float algorithm allows for floats
to move before their call-out as long as float and call-
out are on the same page; more precisely, it allows
floats to appear in the top area of the column in
which the float has been encountered.

\input docstrip

\generateFile{fltrace.sty}{t}{%

\from{ltoutput.dtx}{fltrace,trace}}

\endbatchfile

and run this through LATEX.
6 See [5] in this issue to manually lift even this restriction.

How to influence the position of float environments like figure and table in LATEX?

254 TUGboat, Volume 35 (2014), No. 3

This practice offers a better chance that the
float is visible from the call-out position and doesn’t
end up on a later page. For some journals, however,
this is too liberal and they require that floats are
strictly placed after their call-out, i.e., that in the
call-out column only the bottom area forms a valid
placement option. To accommodate this requirement,
this strategy is implemented by the flafter package.

This may work well if your document has only
a few floats. For documents with lots of floats, place-
ment obviously becomes much more difficult, and
you may find that all your floats appear together
at the end of the document or chapter, or you may
receive a “Too many unprocessed floats” error.

6.4 Prevent floats on certain pages

Sometimes it is helpful to prevent floats from ap-
pearing on a certain page, for example, to prevent
a float in a new section from moving into the top
area on the current page without disallowing a
placement in the top area of a later page. For
this type of fine-tuning LATEX offers the command
\suppressfloats[placement]. The optional argu-
ment can be either t or b and prevents any further
placement into the respective area(s) on the current
page. Without an argument, all remaining floats on
the current page are deferred.

6.5 Implement float barriers

Standard LATEX already implements a float barrier
called \clearpage. Floats on either side will never
appear on the other. It works by outputting all de-
ferred floats, if necessary by generating float pages,
and then starting a new page. While this is suit-
able to keep floats within one chapter (as chapters
typically start on a new page) there are cases where
one would wish for a less intrusive barrier, i.e., one
that works without forcing a new page or is partially
porous.

This functionality is offered by the placeins pack-
age, which implements a \FloatBarrier command
that doesn’t introduce a page break. Through pack-
age options you can alter the behavior to allow for
floats to migrate from one side to the other as long
as they still appear on the same page.

6.6 Overwrite placement restrictions

If a given float is (slightly) too large to fit into a cer-
tain area or if an area already contains the maximum
number of floats but you nevertheless want to force
the current float into this place then adding ! to the
optional argument of the float is a good choice. It re-
sults in ignoring all restrictions implemented through
parameters for this particular float, so that it will

always be placed unless there are already deferred
floats with the same float class or the allowed ar-
eas get bigger than the available space when adding
the float.

As the order of attempts is still the same (first
top then bottom), you may have to use [!b] to force
a float into the bottom area as [!tb] would normally
already succeed in placing it into the top area. The
downside is of course that if the float doesn’t fit, it
will only appear in the bottom area of a following
page. Thus any later text change may create havoc
on your placement decisions.

6.7 Final tuning advice

There are many ways to fine-tune the behavior of
the float placement algorithm; most of them have
been discussed in this article. However, there is one
more “tuning” possibility and in fact the biggest of
all: changes in your document text.

Therefore, as final advice: do not start manip-
ulating parameters or change placement specifiers
or move floats within your document until after you
have fully written your text and your document is
close to completion. It is a waste of effort and it may
even result in inferior placements as your initially
provided restrictions may no longer be adequate after
a text change.

References

[1] Leslie Lamport. LATEX: A Document Preparation
System: User’s Guide and Reference Manual.
Addison-Wesley, Reading, MA, USA, second
edition, 1994. Reprinted with corrections in 1996.

[2] Frank Mittelbach, Michel Goossens, Johannes
Braams, David Carlisle, and Chris Rowley. The
LATEX Companion. Tools and Techniques for
Computer Typesetting. Addison-Wesley, Reading,
MA, USA, second edition, 2004. Also available as
an eBook, see http://www.latex-project.org/

site-news.html#2013-11-02.

[3] Marco Daniel. How to influence the position of
float environments like figure or table in LATEX?,
2012. http://tex.stackexchange.com/q/39020.

[4] Martin Hermann. “thanks” note (footnote)
placed below right column even though
there is enough space on the left, 2012.
http://tex.stackexchange.com/q/43294.

[5] Barbara Beeton. Placing a full-width insert
at the bottom of two columns. TUGboat,
35(3):255–255, 2014. http://tug.org/TUGboat/

35-3/tb111beet-banner.pdf.

� Frank Mittelbach
LATEX3 Project
http://www.latex-project.org

Frank Mittelbach

