
preliminary draft, September 15, 1999 0:05 preliminary draft, September 15, 1999 0:05

TUGboat, Volume 0 (2001), No. 0 preliminary draft, September 15, 1999 0:05 1001

Ideas for ε-TEX/NT S
Matthias Clasen

This document collects some ideas for improvements
to TEX’s math typesetting. Many of the items listed
here can already be found in the archives of the
NTS-L mailing list, others have come up in discus-
sions with Ulrik Vieth and Michael J. Downes.

• Provide an integer parameter \mathstyle where
\ifnum\mathstyle=0 is true when the current style
is displaystyle, 1=textstyle, 2=scriptstyle, 3 and up
= scriptscriptstyle. This parameter could well be
writable; \mathstyle=0 would then be a synonym
for \displaystyle.

To discriminate between cramped and non-
cramped styles, a new primitive \ifcramped would
be needed. We propose a separate \if rather than
more values for \mathstyle, since font size does not
depend on ‘crampedness’. A logical companion for
\ifcramped would be a \cramp primitive to switch
to a cramped style.

In order for this to be workable the syn-
tax of the six generalized fraction commands
\over/\above\atop[withdelims] have to be
changed from infix form to some sort of prefix
form, because of the way they change the math
style of preceding items in a math list.

This affects many things in TeX, e.g., \vrule
could then use mu units, \mathchoice could be im-
plemented as a simple \ifcase\mathstyle, etc.

This is perhaps too much of a change for ε-TEX,
since its full benefit lies in the fact that the removal
of \over and friends makes a much more straight-
forward implementation of math-processing possi-
ble. Adding \mathstyle to ε-TEX while retaining
\over for compatibility reasons will probably lead
to even more involved code.

• Allow kerning between all kinds of atoms if they
are placed directly next to each other, i.e. not just
Ord-Close, but also Open-Ord, etc.

• Provide a way to avoid boxing of subformulas,
since that leads to suboptimal spacing in certain
situations and prevents \left...\right and sim-
ilar constructs to be broken. Michel J. Downes
breqn.sty shows that this can be done on the
macro level for \left...\right at the cost of
avoiding almost all of TEX’s builtin math spacing
and doing it all manually.

• Remove the dependence on strange glyph posi-
tioning; accents should be allowed to be on the base-

line, radicals should not have to have huge depths.
This would enable accent glyphs to serve double
duty as over and under accents and increase the
chance of non-TEX software being able to use TEX’s
math fonts.

This should be implemented in a way such that
the ‘traditional’ positioning still works, e.g., through
additional fontdimensions, whose absence would sig-
nal the ‘traditional’ setup.

Even better might be the possibility to use a
glyph instead of a rule for the radical (some math
fonts already provide such glyphs). This would best
be done by a change of the tfm format, since this in-
formation belongs in the font, but an extended syn-
tax like \radical"270370 rules"271371 or even
\radical"270370271371 would also be an option
(but the latter would make the code too long to be
read as a single 32bit-integer).

One argument against lowering accents (at least
in text fonts) is memory consumption in the most
common case:

\^{x}

.\kern 0.1389 (for accent)

.\tenrm ^

.\kern -5.13892 (for accent)

.\tenrm x

(Memory cost: 2 kerns = 4 words of main mem.)

$\hat{x}$

.\vbox(6.94444+0.0)x5.71527

..\hbox(6.94444+0.0)x0.0, shifted 0.63542

...\tenrm ^

..\kern-4.30554

..\hbox(4.30554+0.0)x5.71527

...\teni x

(Memory cost: 3 boxes and 1 kern = 23 words of
main mem.)

But as the examples clearly show, this argu-
ment is not valid as far as math fonts are concerned,
since the current TEX does already use the more
costly alternative in math mode.

• Reduce the amount of overloading on the font-
dimensions used in math mode, most importantly
for axis_height and default_rule_thickness.
Berthold Horn mentioned that Lucida needs a dif-
ferent math axis for delimiters, so introducing a
separate delimter axis and operator axis indepen-
dent of the default axis (used in \vcenter and



preliminary draft, September 15, 1999 0:05 preliminary draft, September 15, 1999 0:05

1002 preliminary draft, September 15, 1999 0:05 TUGboat, Volume 0 (2001), No. 0

fractions) might be a good idea. Similarly, separat-
ing the radical rule thickness and clearance amounts
form the default rule thickness (used in fractions,
sub/superscript combinations and over/underlines)
would be nice. Consider that we have five parame-
ters for big operators, but only one rule thickness
for many purposes.

To make these changes backward compatible, ε-
TEX would check for the additional fontdimensions
and if it doesn’t find them, use the corresponding
value from the traditional set of fontdimensions.

• Other parameters which influence math typeset-
ting are fixed and could be made accessible (either
as fontdimensions or via primitives). Examples are

• the table describing the spacing.
• the clr parameter used as a minimal overshoot

in positioning the radical. The correspond-
ing parameters \delimitershortfall and
\delimiterfactor for delimiters are accessi-
ble.
• the clearance between denominator, numerator

and bar.

• There might be a need for a right analogue of
radicals in quantum mechanics. I have also seen
such constructs in knot theory.

• Horizontal analogues of varchar recipes. This
would not break any existing document, since ex-
isting fonts simply do not have such beasts. ε-TEX
should do the right thing when the last character
in the charlist for an math accent is an extensible
glyph. This would make it easier to have many sizes
of horizontal parens, braces, brackets, etc and might
also make the implementation of \overbrace easier.
This is one of the cases where DSSSL has a flow ob-
ject class (marks) which is not directly supported in
TEX the program.

• Adding support for nested accents to the
\mathaccent (or a new) primitive would also be
very nice, since the macros for that tend to be
complicated and slow.

• A primitive for underaccents. This would need
some decisions about where to store the needed met-
ric information. I think this would need two ad-
ditional dimensions: the skew, and one additional
parameter to position accent parameters vertically.
My proposal would be: Use 〈skewchar〉-〈accentee〉
kerning for the former and 〈accent〉-〈accent〉 kern-
ing or 〈accent〉 italic correction for the latter.

The design of this primitive must go hand in
hand with generalizing the \mathaccent primitives.
It should be designed so that it works with glyphs
which are designed for the \mathaccent primitive.

• More than 16 families. Looking at tex.web,
it seems that the fam is always stored in a byte,
so that it shouldn’t be difficult to allow 256 fam-
ilies. But it would require changes to the syn-
tax of every primitive which reads a fam value
(\textfont, \scriptfont, \scriptscriptfont,
\mathchardef, \mathchar, \mathcode, \delcode,
\delimiter,\radical, \mathaccent).

• Separate hash table for math mode. Examples:
\^ in text and \^ in math should call directly differ-
ent functions, not force users to remember \hat is
the math form of \^. When used in math mode
\& seems to give an adequate result but it does
not have the right math-symbol class because it is
only \chardef’d, not \mathchardef’d. This could
be well solved if \& automatically called a different
function in math mode.

More and more LaTeX macros are getting
\relax\ifmmode X\else Y\fi wrappers which in-
dicates that the current single hash table is not the
best natural approach.

(More generally, a separate hash table for each
language (where math is treated somewhat like a
language), and a common hash table for mode-
independent things like \message or \relax. Then
Babel doesn’t have to jump through hoops any
more to redefine a list of things like \chaptername,
\bibliographyname, \theoremname, \dateform,
every time a language change occurs—just put the
language-specific definitions in their proper hash
table.)

• The decision to box subformulas at their natural
width might lead to poor spacing in certain situa-
tions. Compare the examples in figure . This boxing
should be avoided at least for \left\dots\right
constructions, to allow line-breaks. t

• To aid the implementation of more compli-
cated display-math handling (breqn.sty), it would
be nice to have a generalized \discretionary
command which allows direct specification of the
charged penalty. This change should be coordinated
with possible extensions of TEXs hyphenation rou-
tines to deal with break-points of varying quality.
To make this really useful, discretionaries in math
mode would have to be allowed to contain math
material.



preliminary draft, September 15, 1999 0:05 preliminary draft, September 15, 1999 0:05

TUGboat, Volume 0 (2001), No. 0 preliminary draft, September 15, 1999 0:05 1003

\hbox to 5cm{$a+(b+c)$} a + (b + c)
\hbox to 5cm{$a+{(b+c)}$} a + (b+ c)
\hbox to 5cm{$a+\left(b+c\right)$} a + (b+ c)

Figure 1: Examples of boxed subformulas

• In the current code, setting operator names like
sin or log uses ligatures and kerning like ordinary
text mode, but the code is separate. Maybe it would
be simpler to use true text mode here? There are
problems with determining the proper font and font
size to use though, if this would be done.

• Change the tfm format. Once we start this, a
lot of things are possible, e.g.

• go from 8-bit to 16-bits character sets,

• get rid of the 15 heights/15 depths/63 italic cor-
rections limitation,

• introduce a verbose format such as AFM that
allows to store arbitrary values,

• get rid of the counter-intuitive interpretation of
width and italic correction in math fonts to rep-
resent subscript/superscript position, just in-
troduce new fields in the font metrics for the
right (and left?) subscript and superscript po-
sition,

• get rid of the whole \skewchar business to
represent accent positions, just introudce new
fields in the font metrics for the ‘center of
gravitiy’ for over- and under accents.

• Should extensible operators like growing inte-
grals be supported? (Some math fonts already have
the necessary glyphs.) If so, we probably need a
diagonal variant of extensible characters too, for
slanted integrals. The parts of the extensible char-
acters should have enough unused dimensions to
allow for the specification of the slant (e.g., the
italic correction of the repeatable piece).

If this idea would be combined with having two
different extension pieces, things like extensible an-
gles would be possible.

Support for extensible operators would im-
ply that there needs to be a way to specify that
a symbol is at the same time extensible and an
operator. One way to achieve this would be to
make the extensible variant the successor of the
\displaystyle variant and then treat construc-
tions like \left\int_a^bf\right.dx properly.

Open question: How would the width of a
slanted extensible glyph be determined?

• Should there be support for left superscripts and
subscripts? This would probably be a major change,
since it would imply changing the design of math-
lists to have four instead of two script fields and
might also require a left analogue of italic correc-
tion. DSSSL has a flow object class (script) that
allows six different scripts to be attached to a math
atom: sub, sup, pre-sub, pre-sup, mid-sub and mid-
sup.


