
Formatting documents with floats
A new algorithm for LATEX 2ε∗

c© Frank Mittelbach

xo-pfloat.tex 1.9 2000/05/19 08:23:11 latex3 Exp

Contents

1 Introduction 1

2 The document source model 2

3 The document layout model 2
3.1 Columns. 2
3.2 Balanced columns. 3
3.3 Float areas. 3
3.4 Float pages and columns. 3
3.5 Float types. 3
3.6 Margins 3
3.7 Footnotes 4
3.8 Headers and footers. 4

4 The processing model 4
4.1 Float placement concepts. 4
4.2 Float pages and columns. 4
4.3 Float storage. 5
4.4 Caption processing. 5
4.5 Flushing floats. 5
4.6 Float and call-out relations. 5
4.7 Float and footnote relations. 5
4.8 Area statuses. 6
4.9 Area constraints. 6
4.10 To “Here” or not to “Here” 6

5 User control 6
5.1 Column and page breaks. 6
5.2 Manual float flushing. 7
5.3 Specifying preferred areas. 7
5.4 Manually position all floats. 7
5.5 Tracing the algorithm’s behavior. 7

6 Layout Specification 8
6.1 Float type declarations. 8
6.2 Float area declarations. 8
6.3 Footnote formatting declarations. 9
6.4 Page setup declarations. 9
6.5 Float formatting declarations. 10

7 Performance of the algorithm 11

8 Outlook 11

Abstract

This paper describes an approach to placement of floats in
multicolumn documents.

The current version of LATEX was originally written for
single-column documents and extended to support two-
column documents by essentially building each column
independently from the other. As a result the current sys-
tem shows severe limitations in two column mode, such as
the fact that spanning floats are always deferred to at least
the next page or that numbering between column floats
and spanning floats can get out of sequence.

The new algorithm is intended to overcome these limi-
tations and at the same time extend the supported class of
document layouts to multiple columns with floats span-
ning an arbitrary number of columns.

1 Introduction

One problem with formatting documents containing floats
is the number of potential formatting solutions that need

1

to be checked out. The number of trials grows combinato-
rially in the number of floats and areas which can receive
them. If we haven floats waiting to be placed andm ar-
eas in which we can place them on the current page being
built (not counting the “deferred area”) then the number
of different placements is given by

#trials =
(
n+m

m

)
=

(n+m)!
n!m!

(1)

assuming that the order of floats has to be preserved, i.e.,
if the call-out of floatfi is before the call-out offj in the
text stream then the floatfi will be placed in earlier than
floatfj where “earlier” is a defined relation of float areas.

For example, if we have 8 floats waiting to be distrib-
uted among 12 areas (which corresponds to a three col-
umn page with float areas at the top and bottom allowing
for partial spans) then we have to check 125970 possible
distributions; if two additional floats appear we end up
with 646646 trials.

Even though a large number of these distributions
would be unacceptable and discardable straight away, af-
ter some initial test, the resulting running time of the al-
gorithm would clearly be beyond any acceptable speed.
(Assuming we could do 1000 trials per second, which is
ridiculous high since many of them would require trial-
typesetting the whole page, then the case of 646646 trials
would still take roughly 10 minutes to form a decision.)

Thus it is important to find algorithms with complexity
that is at worst linear in both the number of floats on the
trial list and the number of possible float areas, even if
this means that in a few cases a relatively good layout
will not be found. It is even better if they have minimal
redundancy.

Note that assessing the actual running time of TEX code
is not straightforward since some activities are very much
faster than others. For example, performing a test by using
a reasonable number of macro expansions and register as-
signments may be very much slower than running through
a long typeset list and then doing a simple test.

The algorithm we have implemented fulfills the re-
quirement of being (essentially) linear in the number of
floats and the number of float areas.

2 The document source model

The document source is a single stream of continuous text
containing call-outs to floating objects. (At the moment
the call-outs are marked by placing the objects into the
stream but it would be possible to provide them as sepa-
rate objects.) Floating objects (as of today) come in three
incarnations:

• Objects where the call-out and the placement re-
quires a strict spatial relationship, e.g., same line in
the margin. An example would be marginal notes as
implemented by\marginpar in LATEX 2ε.

• Objects where the call-out and the placement is re-
quired to fall onto the same column/page/spread,
e.g., footnotes.

• Objects where there is a defined relation between
call-out and object placement, e.g., “not in an earlier
column”, or “on the same page or later”, etc. These
are the traditional floats.

Float objects in the last group are typed where the type is
defined by the logical content of the object, e.g., “figure”,
“table”, and so on.

The document formatting is achieved using a minimal
but customizable lookahead (typically the considered gal-
ley material is the equivalent of one page/spread of textual
material ignoring the additional size taken up by embed-
ded float objects).

While making up pages the main “quality” guidance
for the algorithm is to try to place each float as early as
possible without violating defined constraints.

3 The document layout model

3.1 Columns

The page layouts which are supported by the new al-
gorithm support an arbitrary number of text columns of
equal width.

The number of columns per page as well as their width
can be changed at forced page breaks such as the start of
chapters.

2

3.2 Balanced columns

Balancing columns (like themulticol package does) is
planned but not implemented. The major problem in that
area is the handling of column floats during the balancing
process.

3.3 Float areas

Float objects are distributed into float areas which are
rectangular in shape. Float areas span one or more text
columns, their horizontal size is therefore given by the
following formula (wherec is the number of columns
spanned):

〈area-width〉 = c×
(
〈col-width〉+ 〈col-sep〉

)
−〈col-sep〉

Naming conventions for float areas is as follows:

〈identifier〉〈span-count〉〈start-column〉.

The〈identifier〉 is a single letter denoting the type of area,
e.g.,t for top, b for bottom. The〈span-count〉 is a sin-
gle digit denoting the number of columns to span. The
〈start-column〉 is a single digit1 denoting the start column
of the area. Thust23 is a top area starting at column
three and spanning two columns, i.e., three and four. A
restriction due to the naming scheme is that currently no
more than 9 columns are possible.2

Only a subset of the float areas is allowed to be popu-
lated on a page. In essence the new algorithm does not
support placements that result in “splitting” the text of a
column due to a float (other than column ‘here’ floats).3

This means that population of some float areas must be
prevented, namely those satisfying these conditions when
psc (wherep = pos,s = span,c = column) has just been
populated:

pij with j < c ≤ i+ j < c+ s

or

pij with j ≤ c+ s < i+ j ≤ 〈number-of-columns〉
1With a bit of care in the code this could be extended to allow more

than one digit.
2The scheme is different from the original one used, wheret23

would have denoted an area starting at column two and spanning un-
til column three. Probably a final version will exchange〈span-count〉
and〈start-column〉 as this seems to be more natural.

3Perhaps this restriction will be lifted one day.

Figure 1: Overlapping float areas

aaaaaaaaaaa 444
aaaaaaaaaaa 444
aaaaaaaaaaa 444
111 222
111 222 bbbbbbb
111 222 bbbbbbb
111 222 bbbbbbb
111 222
111 222 333 444
111 222 333 444
111 222 333 444

The first formula describes the areas which partly over-
lap from the left, the second formula describes those that
partly overlap from the right. Areas which are sub- or
super-areas, e.g.,t31 and t22 do not affect each other.
The above restriction is necessary to prevent situations
like the one shown in figure1 i.e., where the float area
t23 (represented as b’s) would result in splitting the
fourth column into two independent text areas.

The possibilities, as well as the restrictions, are equal
for both top and bottom areas. This means that the new
scheme in particular supports spanning bottom areas.

3.4 Float pages and columns

Float pages, i.e., pages consisting only of floats, will be
supported as well as float columns.

3.5 Float types

The type of float influences the formatting, e.g., where
the caption is placed in relation to the float body, how it
is formatted, what kind of fixed strings are added, etc. It
also restricts the placement algorithm in respect to which
float areas can be populated as explained below.

3.6 Margins

The marginal areas can receive marginal notes which are
aligned with the corresponding text line. In documents
with more than two columns marginal notes are cur-
rently not supported though one could envision allowing
them even there. If marginals have to compete for space
the later marginal will be moved downwards if there is

3

enough space on the page, otherwise the line containing
the marginal will be moved to the next column/page.4

An alternative usage of the margin is to place footnotes
into it. A prototype version of this is provided already, see
section3.7.

Another potential use of the margin areas is to use them
(or parts thereof) as float areas in their own right. The
problem with this would be that these float areas would
have a horizontal width which is different from the col-
umn width, thus allowing only a limited class of floats to
appear therein.

Another potential extension would be to allow float ar-
eas that border on a margin to use the marginal space as
part of the float area, thereby allowing the filling of such
an area with floats which are wider than the nominal float
area. A special case of this, the placement of the caption
in the margin beside the float body, is already provided by
choosing a suitable caption formatting instance.

3.7 Footnotes

Footnotes can be regarded as a special type of floats. They
are objects which are associated with lines of text (their
call-out) but in contrast to normal floats such as “figures”
or “tables” their placement constraints are stronger, e.g.,
they typically have to appear at the bottom of the column
which contains their call-outs, or at least they have to ap-
pear on the same page as their call-outs.

In its current version, the model supports footnotes be-
neath the call-out column (normal behavior); all footnotes
in the last column (as with theftnright package for
two-column mode); all footnotes in the outer (or inner)
margin.

Without an extension to the page makeup algorithm
(but instead with a suitable redefinition of the footnote
commands) they could be processed as marginal notes or
alternatively as “end-notes”.

3.8 Headers and footers

The header and footer areas may use data received from
individual columns. An extended version of TEX’s mark
mechanism is made available which allows the definition
of arbitrarily many independent classes of marks. Within

4This is not yet implemented — right now they overprint each other.

each mark class information about the top mark (i.e., the
mark active at the top of the column) the first mark and
the last mark is made available for retrieval.

This allows to produce correct running headers and
footers for various types of applications such as dictio-
naries, manuals, etc.

4 The processing model

4.1 Float placement concepts

To build a page(-spread) the algorithm first assembles
enough textual material to be able to fill the page without
placing any floats. During this process all floats that have
their call-outs within the assembled galley are collected.
They form, together with unplaced floats from previous
pages, an ordered trial list of floats.

The allowed float areas on the page under construction
are totally ordered as well.

The algorithm proceeds by taking the first float from the
trial list and trying to place it into the first float area from
the area list. It then checks if all constraints (see below)
are met and if not the algorithm will try to place the float
into the next area until either all constraints are met or the
areas in the float area list are exhausted. A trial that does
not fail means that this distribution of floats becomes the
best solution so far and all further trials will be based on
adding to this solution (no backtracking) . If the algorithm
fails to place the float into any area it means that the float
will be deferred to a later page.

By adding floats to areas the constraints for further tri-
als can change for several reasons: on one hand, the call-
out positions of various floats move since the float will
occupy space on the page; on the other hand, placing a
float in some area might result in disallowing the place-
ment of other floats in the same or in other areas.

4.2 Float pages and columns

At the moment there is only rudimentary support for float
pages available: at the start of each page the algorithm
will try to form a float page out of all floats that have been
deferred from previous pages. However there is no lay-
out control available to define the conditions under which
such a trial will succeed.

4

4.3 Float storage

Float bodies can be typeset into boxes at the point of ‘call-
out’, as with thefigure andtable environments in the
standard LATEX; it may also be possible to specify at the
call-out point a logical pointer to a float whose typesetting
is specified elsewhere (e.g., an external file).

However, text sub-elements such as the caption, etc.,
(e.g., from\caption) are not typeset at this stage but
are stored as token lists; this allows for trying different
possible layout specifications, e.g., for its measure, during
the float-positioning trials. At present this is confined to
at most a single caption element per float.

4.4 Caption processing

When a float is placed into an area the caption is trial for-
matted and mounted onto the float body. This process can
take into account various information about the float po-
sitioning trial, such as the area to format it into, the fact
that it formats onto a verso or recto page, etc. It might
try several possibilities before making a decision, e.g., if
one formatting of the float results in violating some con-
straint(s) it might try a different formatting at this point.

4.5 Flushing floats

It is possible to mark points in the source document as
boundaries beyond which floats whose call-outs are prior
to the boundary cannot pass. In other words a “flush
point” directs the algorithm to place all affected floats into
areas which are “before” the flush point.

If due to other constraints the float could not be placed
in such an area the algorithm first retries all potential ar-
eas using a less rigid set of constraints (for example, re-
strictions on the number of allowed floats per area are
dropped) and if this still doesn’t enable the algorithm to
place the float properly it will as a last resort move the
flush point to a later column.

Flushing of floats can be done either for all dangling
floats or on a per float type basis, e.g., it is possible to
flush only floats of type “figure”.

4.6 Float and call-out relations

The algorithm keeps track of the relation between a float
and its call-out. This allows one to define constraints
which guide the algorithm during the float placement
phase. It is always permissible to place a float “after” its
call-out, e.g., in a later column/page. At the moment the
following constraints can be specified:

none which means that the relation between call-out and
float placement is not relevant for placing floats.

page which means that the float can be placed anywhere
on the page with the call-out (it is visible from the
call-out).

column which means that the float can be placed before
the call-out as long as it is placed in the same column.

after which means that the float has to be placed strictly
after the call-out.

When extending the algorithm to directly support spreads
the above list is going to be extended by an option that
allows floats to move backwards on the whole spread.

4.7 Float and footnote relations

It is possible to direct the algorithm to check on each col-
umn if there are footnotes, and if so to prevent it from
placing floats in the bottom area. In theory it might be
possible that a forbidden constellation might resolve itself
once the algorithm has added further floats, e.g., it could
be the case that by adding additional floats the offend-
ing footnote gets moved to a different column. However,
checking for this would mean potentially large backtrack-
ing so the algorithm uses a conservative approach and
simply considers a trial as failed if footnotes and bottom
areas collide.

It is planned to allow a designer the choice of speci-
fying where the footnotes should be placed in relation to
any bottom floats (if the combination is allowed). Right
now this is not implemented and column footnotes will
always appear below the text column, i.e., above any bot-
tom floats.

5

4.8 Area statuses

For each area the algorithm keeps track about whether or
not it is closed for individual float types, e.g., is not ac-
cepting any more floats of type “figure” or closed for all
types. The status of an area can change due to floats be-
ing placed into other areas (this might, for example, close
earlier areas, or areas that overlap) or it can change due to
the fact that the area became too full in some way (e.g., a
size constraint or a number of floats constraint).

Some of these constraints can be “relaxed” in certain
situations, e.g., if the algorithm is directed to flush out re-
maining floats prior to a certain point in the galley it will
drop constraints related to number of floats per area or
size restrictions. However, if an area was closed due to
a different float being placed into some other area, this
area will stay closed in all circumstances to ensure proper
sequential placement of floats and to ensure that overlap-
ping areas that are forbidden as explained in section3.3
will not receive floats at the same time.

4.9 Area constraints

The algorithm offers several possibilities for the designer
to specify how and under what circumstances a float is
allowed to be added to a certain area on the page.

As explained above all areas on a page are tried in a
specific order. This order can be specified and changed for
specific parts of the document. Areas that are closed for
the current type will be bypassed as well as areas which do
not span the right number of columns to fit the horizontal
size of the float. If these initial tests succeed the float may
still fail to be placed into a certain area if it doesn’t fulfill
the following set of constraints:

• There is an upper limit on the total number of floats
that can be placed on an individual page.

• Each area has an upper limit of floats that can go into
it.

• After placing the float the remaining space in the text
column must be larger than a specified value.

All such constraints are customizable.
Additional constraints will probably be implemented

once there has been some experience of what controls are

actually needed to allow the specification for a reasonable
number of layouts.

For example, LATEX 2ε allows the designer to restrict
the maximum size of an area, but should one provide this
or should there be a constraint on the size of all stacked
areas? Or should there be both?

4.10 To “Here” or not to “Here”

LATEX 2ε allows the user to control the placement of an in-
dividual float by specifying one or more areas into which
the float would be allowed to move using single letters.
As a special notation anh would denote a so-called “here”
float. Its advertised semantics is to try placing the float “at
the position in the text where the environment appears”
[1, p. 197]. If this is not feasible LATEX 2ε would try the
remaining allowed possibilities on the next page, thus a
float with aht specification would either appear within
the text or at the top of the next or a later page.5

In many cases people however prefer a “here” which
always means “here”. The latter form is implemented in
some add-on packages for LATEX 2ε, however usually at
the cost of keeping the float sequence order in sync.

The new model supports only the absolute “here” form
for floats; however, correct ordering of floats in the out-
put is guaranteed (if the tag generating the here float is-
sues flushing of floats for the current type). If there is not
enough space to place the float in a column, the float plus
the preceding text line6 is moved to the next column/page.

5 User control

5.1 Column and page breaks

Breaking of columns and pages can be controlled from
the source document by placing special tags into it. The
\columnbreak command ends the current column af-
ter the current line (if used in horizontal mode). Similarly

5In two-column mode this can in fact result in a placement on the top
of the second column even though the call-out position finally falls into
the middle of that column.

6More precisely the column is broken at the last breakpoint preceding
the current position which is normally one line above but could be more
(or less).

6

the\pagebreak command ends the current page.7

5.2 Manual float flushing

The flush float functionality is available within the source
document via the command\flushfloats . This com-
mand takes an optional argument which, if present, de-
notes the float type to flush. If used without the optional
argument all floats are flushed.

5.3 Specifying preferred areas

At the time of writing the document source interface for
specifying the group of areas into which a float is allowed
to move is not yet decided. One could envision keeping
the original LATEX interface to float environments with op-
tional argument. In that case something like[t] could
be internally interpreted as “any top area that exists” and
translated into a list such ast21 t11 t12 . But other
interfaces are conceivable as well.

5.4 Manually position all floats

Any algorithm that automatically places all floats may
fail to produce adequate results in some situations. In
LATEX 2ε the user was offered only the optional arguments
of the float environments and by this method and by mov-
ing floats slightly in the source document one was finally
able to change the formatting as needed.

This was a time consuming and error prone manual task
and any slight change in the source document text was
likely to result in making this work obsolete.

To improve on this situation the new algorithm can be
directed to write out a file containing all of its float8 se-
lections (an example is shown in table1). By simple drag
and drop the user can produce alterations to this selection.
If such a modified file is stored as\jobname.fpc then
the algorithm will use these selections without attempting
to apply any of its internal rules. Thus the formatting will
happen exactly as specified.9

7At the moment these commands force a break; there is no possibil-
ity, as in LATEX 2ε to suggest only that the current point is a good or bad
break.

8Floats in this contect mean “traditional” floats, not footnotes or mar-
ginpars.

9If the floats are stored within the source document at the point of

Page: 1 (1)
Area: t31

Float: 4 (figure 4) []
Area: b12

Float: 2 (figure 2) [mylab:fig1]
Area: t13

Float: 3 (figure 3) [mylab:fig2]

Area: hhh
Float: 11 (table 1) []

Page: 2 (2)
Area: t31

Float: 8 (figure 8) []
Area: t22

Float: 5 (figure 5) []
Area: b11

Float: 6 (figure 6) [mylab:fig3]
Area: b13

Float: 7 (figure 7) [mylab:fig4]

Table 1: An examplefpl file

Beside moving floats between float areas it will be pos-
sible to move floats in and out of the special area called
hhh which represents a list of all “here” floats on the
page. If a float is moved into the “here” area it means
that it will be positioned as a here float at the point of its
call-out.

As an extension to this method we are experimenting
with restricting the manual control only to parts of the
document, e.g., allowing the user to manually fix a single
chapter but have the algorithm determine the remainder.
We also plan to integrate column length control in this
way, so that it becomes easily possible to run a page or
double-spread long or short by specifying this externally
rather than via tags in the source document.

5.5 Tracing the algorithm’s
behavior

In contrast to the LATEX 2ε output routine, which is a black
box as far as the user is concerned, the new algorithm tries
hard to make its decision process comprehensible. Table2

their call-outs, the algorithm will be able to position a float only if it has
already encountered the float in the source document. This means that
one can move a float arbitrarily forward but only to a limited extent be-
fore its call-out position. If the floats are stored externally to the source
document this restriction does not apply.

7

Table 2: Progress output of the algorithm

===
STATS: floats waiting = 37 on page 2

===
Float: \bx@A {figure} {1.1} {a special one}

area trial: t31 -> failed: span count t31 /= 1
area trial: t21 -> failed: span count t21 /= 1
area trial: t22 -> failed: span count t22 /= 1
area trial: t23 -> failed: span count t23 /= 1
area trial: t11 -> failed: t11 float not allowed by user control (t12)
area trial: b11 -> failed: b11 float not allowed by user control (t12)
area trial: t12 -> accepted

Float: \bx@B {figure} {1.2} {This is a figure caption for (1)}
area trial: t31 -> failed: span count t31 /= 1
area trial: t21 -> failed: span count t21 /= 1
area trial: t22 -> failed: span count t22 /= 1
area trial: t23 -> failed: span count t23 /= 1
area trial: t11 -> failed: area closed for type figure
area trial: b11 -> failed: area closed for type figure
area trial: t12 -> accepted

shows a sample output produced by it. It shows for each
float which areas have been tried, why they were rejected
etc. There is also an option which produces about 100
times as much information but the latter is probably useful
only for debugging the system in case there are errors in
the code.

6 Layout Specification

In the class file the designer is given control over the al-
gorithm’s behavior in all the aspects described above (and
several more).

The layout specifications are done through the new
template and instance concept, see [2]. Additional infor-
mation such as experimental code, further documentation,
etc. can be found on the LATEX project web site at:

http://www.latex-project.org

In contrast to the algorithm itself, which in its basic
functionality now seems to be stable and reliable, the de-
sign interface is far more experimental. Thus the example
declarations given below represent only the current state
of thought and are likely to be modified at any moment.

6.1 Float type declarations

Float types are declared using the
\DeclareFloatType command which at the
moment takes two arguments: the name of the type which
is used to refer to it in various places, and a single letter
abbreviation which is used to produce the extension for
an external file, e.g., to collect material for the list of
figures, etc.

\DeclareFloatType{figure}{f}
\DeclareFloatType{table}{t}
\DeclareFloatType{algorithms}{a}

Clearly additional information needs to be stored together
with the type, e.g., the representation of the float number,
etc. This information is likely to be added to the type
declaration by changing the second argument into a list of
key/value pairs comparable to the way the declaration of
areas is handled.

The declaration of a new float type automatically de-
fines the necessary user document environments.

6.2 Float area declarations

Any float area that is going to be used at some stage
by the algorithm needs to be declared beforehand. This

8

http://www.latex-project.org

is done through the\DeclareFloatArea command
which takes two arguments: the name of the area (which
has to follow the conventions explained in section3.3)
and a list of key/value pairs describing the characteristics
of the area.

\DeclareFloatArea{t22}
{

type-close-list = {t11,b11},
all-close-list = {t21,t23},
max-float-num = 2,

}

As of today an area is characterized through the
maximum number of floats it is allowed to receive
(max-float-num) and through two lists which tell the
algorithm which other areas are affected by adding a float
to the current area. The listtype-close-list enu-
merates all areas which are not allowed to receive ad-
ditional floats of the type that has been placed into the
current area while the listall-close-list contains
the information about all areas that are to be completely
closed the moment a float is received in the current area.

Thetype-close-list key is primarily intended to
specify a partial order on the areas to ensure that floats are
not getting out of sequence in the output. For example,
the above declaration says: if a float is placed into area
t22 , i.e., a top area starting at column two and spanning
two columns, then the single column areast11 andb11
(i.e., those of the first column) are closed for floats of the
same type. However, assuming this example is part of
a declaration for a four column layout which could have
areas liket41 or t31 , there is nothing said about closing
those areas. Thus in this particular layout a float spanning
three or four columns would still be allowed to go on top.

On the other hand theall-close-list key is avail-
able to ensure more visual constraints, e.g, “ift21 gets
filled we don’t want to haveb21 filled as well, we only
wantb22 in this case”. In addition it needs to implement
the restriction about overlapping float areas as described
in section3.3, e.g., in the example declarationt21 and
t23 are closed since they partly overlap witht22 .10

10As mentioned before, this restriction might be lifted in a later ver-
sion of the algorithm; as long as it is required one could alternatively
add those areas behind the scenes to avoid runtime problems.

6.3 Footnote formatting declarations

The formatting of footnotes is specified by declaring in-
stance(s) of typefootnotesetup . At the moment
three templates are available though they should be con-
sidered only as prototypes: the templatestd produces
conventional footnotes below each column, the template
ftnright collects all footnotes and typesets them in the
rightmost column, and themargin template collects and
typesets them in the right outer margin.

The keys of the above templates are providing only a
rudimentary flexibility (to say it positively), in a produc-
tion version all of them would need a large number of
extensions. As an example

\DeclareInstance{footnotesetup}
{mainmatter}{std}
{

text-sep = 14pt plus 3pt,
max-height = 8in,

}

would declare the named instancemainmatter that
provides footnotes below columns with a separation of
14pt+ and a maximum height for footnotes per column
being8in .

Instances like this can then be used in the declaration
for a particular page layout as explained below. Alterna-
tively one could use unnamed instances there using the
\UseTemplate method.

6.4 Page setup declarations

At the heart of the layout declaration are instances of
the type pagesetup2. 11 An example setup show-
ing all currently available keys is given in table3.
The first four keys (column-num , column-width ,
column-height , andcolumn-sep) describe the col-
umn structure of the page layout being defined, i.e., in this
case a two-column layout.

The following three keys define the standard constraints
for the algorithm when placing floats:max-float-num
is the maximum number of floats that can go on a normal
page, float-callout-constraint defines what
kind of relations between float and call-out are allowed,

11The number 2 has historical reasons and will vanish again at some
point in the future.

9

Table 3: Example declaration for thepagesetup2 template showing all keys

\DeclareInstance{pagesetup2}{mainmatter}{std}
{

column-num = 2,
column-width = 220pt,
column-height = 610pt,
column-sep = 20pt,
max-float-num = 3,
float-callout-constraint = page,
bottom-float-footnote-constraint = forbidden,
flush-float-callout-constraint = page,
flush-bottom-float-footnote-constraint = none,
area-list = {t21,t11,b11,b21,t12,b12},
defer-type-close-list = {t21,t11,b11,b21,t12,b12},
defer-all-close-list = ,
footnote-setup = mainmatter,

}

and bottom-float-footnote-constraint de-
fines whether or not bottom floats are allowed in case of
footnotes.

The last two constraints are replaced byflush-
float-callout-constraint and flush-
bottom-float-footnote-constraint in case
flushing can’t be done without relaxing the condi-
tions (max-float-num is disregarded in that case
automatically).

The key area-list defines all float areas that
are allowed in this page layout as well as defining
the order in which the areas are tried when plac-
ing floats. The keysdefer-type-close-list
anddefer-all-close-list define the “closing ac-
tions” for the special area which receives the floats
that could not be placed. E.g., if a float of a
certain type can’t be placed then all areas listed in
defer-type-close-list will be closed for this
type. In other words the two keys are comparable to the
ones available for area declarations.

Thus these keys together with the keys from the area
declarations are most important to guarantee a sensible
order of floats on the formatted page.

In an earlier implementation of the algorithm a sim-
pler scheme was used: there was a single area list which
was shortened whenever a float couldn’t be placed into it
thereby confining the remaining floats to this restricted se-

lection. This works fine as long as there are mainly single
column floats since in this case the area can be reason-
ably ordered into a single sequence. However the mo-
ment spanning floats are supported the situation gets less
straightforward. Is the areat11 before or aftert21 ?

It is quite likely that the current controls will turn out
to be too crude. This will be seen once a suitable num-
ber of layouts have been produced under this scheme (or
couldn’t be produced because they turned out to be un-
specifiable).

Finally the key footnote-setup receives an in-
stance of afootnotesetup template.

6.5 Float formatting declarations

For the attachment of captions to floats there ex-
ists a prototype interface using templates of the type
buildfloat . At the time of writing, available tem-
plates arecenteredbelow , centeredabove , and
bottomright , which center the caption below or above
the float body or place it to the right of it, aligned with the
bottom of the float body. All of them would need to be
generalized for a production system to become more flex-
ible.

When trial-formatting a float the algorithm checks for
the existence of a number ofbuildfloat instances and
uses the first one that exists to build the float. More

10

precisely it first checks if an instance with the name
〈area〉- 〈type〉 exists, then it looks for〈area〉, then for
〈type〉, and finally, if none of them exists, for an instance
with the namedefault . So at least the latter instance
has to be declared by the class.

\DeclareInstance{buildfloat}{default}
{centeredbelow}{}

\DeclareInstance{buildfloat}{table}
{centeredabove}{}

\DeclareInstance{buildfloat}{t13}
{bottomright}{}

\DeclareInstance{buildfloat}{t22}
{bottomright}{}

The example declaration above defines the placement of
captions above tables and below for all other types, with
the exception of the areast13 and t22 where the cap-
tions are set to the side.

7 Performance of the
algorithm

To test the performance of the algorithm we prepared a
somewhat ridiculous test file containing three types of
floats (“figures”, “tables”, and “algorithms”) with a total
number of 47 floats. The chosen layout had 3 columns
and 11 potential float areas. Figure captions have been
placed below the float while with tables and algorithms
the caption was placed on top. The exception was the top
areas adjacent to the outer margin: floats placed there got
their captions placed to the right and partly into the mar-
gin. Footnotes were collected for all columns and placed
in the outer margin.

Floats had to strictly follow their call-out and a maxi-
mum of ten floats was allowed per page, i.e., roughly three
per column.

Since the document contained many floats early on (24
on page one) and the first of these was especially con-
structed to be not placeable the first time around, the algo-
rithm had to work hard to place all the dangling floats. Ta-
ble 4 shows some statistics as produced by the algorithm
on the number of trials necessary (the highest number was
397 for 37 floats; by comparison, formula (1) would give
22595200368 which would probably take a bit longer to

STATS: floats waiting = 24 on page 1
STATS: trials = 286
STATS: floats waiting = 19 on page 2 (float page)
STATS: trials = 159
STATS: floats waiting = 37 on page 2
STATS: trials = 397
STATS: floats waiting = 19 on page 3 (float page)
STATS: trials = 166
STATS: floats waiting = 7 on page 4 (float page)
STATS: trials = 41
STATS: floats waiting = 20 on page 4
STATS: trials = 204
STATS: floats waiting = 5 on page 5 (float page)
STATS: trials = 27
STATS: floats waiting = 12 on page 5
STATS: trials = 108
STATS: floats waiting = 0 on page 6 (float page)
STATS: trials = 0
STATS: floats waiting = 6 on page 6
STATS: trials = 57

...
STATS: floats waiting = 6 on page 12 (float page)
STATS: trials = 26
STATS: floats waiting = 6 on page 12
STATS: trials = 37
STATS: floats waiting = 0 on page 13
STATS: trials = 0

Table 4: Statistics from the algorithm

evaluate). Note that on the third page the algorithm was
able to produce a float page, on all other pages the float
page trial was unsuccessful.

Table5 shows the running times needed to produce the
final document of 13 pages when the algorithm is used
with different tracing settings. The test machines were
a Pentium 600 machine and an older laptop with a 486
processor. In both cases TEX was run straight from a TEX
Live 4 CD.

These times show that the algorithm has an acceptable
time performance since even on a 486 the average time to
produce a page is roughly 2 seconds.

8 Outlook

While the current algorithm performs well there are sev-
eral areas in which its functionality could and probably
should be extended. The most important points are given
in the following list.

11

PIII (600MHz) 486DX4 (75MHz)

no tracing

real 0m1.533s 0m27.633s
user 0m1.460s 0m26.940s
sys 0m0.050s 0m0.690s

progress information

real 0m3.116s 0m36.885s
user 0m1.740s 0m34.470s
sys 0m0.080s 0m2.420s

full tracing

real 0m7.833s 1m22.480s
user 0m2.720s 1m7.890s
sys 0m0.280s 0m12.360s

Table 5: Running times of the algorithm

• Balancing of partial pages, comparable to the way
the multicol package works, should be imple-
mented to allow for layouts where, for example, a
heading should span across all columns.

• We intend to provide more control over the marginal
areas, allowing for marginal floats as well as other
objects in the margin, properly interacting with each
other.

• Without much effort the algorithm could be extended
to properly support double-spreads so this should be
added some time soon.

• Once the algorithm has decided which floats to place
onto a page one could add a post-processing step in
which the placement could be reconsidered accord-
ing to different rules. For example, if the call-out
relation ispage then floats will tend to be placed in
the left-hand columns. This is fine as long as there
are many floats to process but on a page with only a
few floats one might want to redistribute them differ-
ently once it is clear which floats could go onto the
page.

• Since it is known beforehand how many floats are
actively waiting to be placed, one could use a dif-
ferent algorithm that tries all possible combinations
as long as there are only a limited number of floats
to be placed. The boundary at which the algorithm

changes behavior could be made customizable so
that people with faster machines (or more patience)
could have the optimum running for as many floats
as they like.

• The float call-out constraints should probably be
made more flexible; for example, if the design spec-
ifies column then a spanning float whose call-out
is in the second column will not be placed into the
areat21 since this area is above the first column (as
well as above the second) and the algorithm therefore
fails the trial. This behavior is debatable and should
at least be made customizable.

• Instead of flushing floats in such a way that all floats
will appear before a certain point in the text column,
one does sometimes want only to ensure that the float
appears on a certain page. Such a “fuzzy-flush” con-
cept is currently under investigation.

References

[1] Leslie Lamport.LATEX: A Document Preparation Sys-
tem. Addison-Wesley, Reading, Massachusetts, sec-
ond edition, 1994.

[2] Frank Mittelbach, David Carlisle, and Chris Row-
ley. New interfaces for LATEX class design.TUGboat,
20(3):214–216, September 1999.

12

	Introduction
	The document source model
	The document layout model
	Columns
	Balanced columns
	Float areas
	Float pages and columns
	Float types
	Margins
	Footnotes
	Headers and footers

	The processing model
	Float placement concepts
	Float pages and columns
	Float storage
	Caption processing
	Flushing floats
	Float and call-out relations
	Float and footnote relations
	Area statuses
	Area constraints
	To ``Here'' or not to ``Here''

	User control
	Column and page breaks
	Manual float flushing
	Specifying preferred areas
	Manually position all floats
	Tracing the algorithm's behavior

	Layout Specification
	Float type declarations
	Float area declarations
	Footnote formatting declarations
	Page setup declarations
	Float formatting declarations

	Performance of the algorithm
	Outlook

