
Language Information in Structured Documents:
A Model for Mark-up and Rendering

Frank Mittelbach and Chris Rowley
LATEX3 project
Frank.Mittelbach@eds.com, C.A.Rowley@open.ac.uk

Abstract

In this paper∗ we discuss the structure and processing of multi-lingual documents,
both at a general level and in relation to a proposed extension to the (no longer so
new) standard LATEX. Both in general and in the particular case of this proposal,
our work would be impossible without the enormous support, both practical and
moral, we get from our fellow members of the LATEX3 project team† (who maintain
and enhance LATEX) and from people all over the world who contribute to the
development of LATEX with their suggestions and comments.

Introduction

The paper starts by examining the language struc-
ture of documents and from this a language tag
model for LATEX is developed. It then discusses
the relationship between language and document
formatting and the types of actions needed at a
change of language. This will lead to a model
that supports the specification of these actions and
of their association with the tag structure in the
abstract document.

The model is then extended to provide the
necessary support for regions that have their own
visual context or that receive content from other
parts of the document, thus breaking the basic tree
structure of an abstract document — this is in the
section entitled “Special Regions”.

Finally a high level summary of the required
interfaces is given. A full formal specification, to
be used for a prototype implementation in LATEX, is
currently under development—a first public test im-
plementation is expected to exist for the 1997/12/01
release of LATEX.

If you are interested in the issues raised in this
paper or in other aspects of our work to enhance
LATEX, please join the project’s electronic discussion
list. To do this, please send a message to:

listserv@relay.urz.uni-heidelberg.de

Containing this line:
subscribe LATEX-L your name

∗ This paper was originally given at the Multilingual
Information Processing symposium, March 1997, Tsukuba,
Japan.
† Current LATEX3 project team members are Johannes

Braams (NL), David Carlisle (UK), Michael Downes (USA),
Alan Jeffrey (UK) and Rainer Schöpf (DE).

Language Structure of Documents

Structured documents can be understood as being
explicitly or implicitly labeled with “language tags”
denoting that a portion of the document contains
data written in a certain “language”.

These tags have the following properties:

• They impose on the document a hierarchical
tree structure that may not be compatible with
that document’s other logical structure, e.g.,
there might be a language change in the middle
of a logical element such as a list item.1

• At any one point in the document the “current
language” can be determined.

The term “language” in this context is some-
what vague and might need further qualification;
but for the purpose of the following discussion it is
sufficient to define it as a ‘label’ whose value affects
certain aspects of formatting.

Hierarchy of language tags

The structure created by attaching such language
tags to the text can be considered to be of varying
complexity. The simplest case would be to regard
this as a flat structure: for each point in the doc-
ument only a “current” language is defined, disre-
garding the fact that certain language segments can
be considered to be embedded within others. This
model of language within documents is, for example,
employed within the current Babel system where, by
default, all language changes are in this sense global.

1 However, for practical purposes it is normally possible
and acceptable to artificially force the structure imposed by
the language tags into the logical hierarchy imposed by other
tags.

TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting 199

Frank Mittelbach and Chris Rowley

In a more complex model each area has a “cur-
rent” language but may be embedded within a nest
of larger areas, each in its own language. In such
a model, a change of language has a different qual-
ity, and therefore may invoke different formatting
changes, depending on the level in the hierarchy at
which it occurs.

Our investigations lead us to conclude that, to
properly render a document, one needs a combina-
tion of both models:
• the concept of a base language for very large

portions of a text (for most documents this will
in fact be only one such language for the full
text): this has a flat structure, there is only
one base language at any point in the text;
• the concept of imbedded language segments:

these are nestable (to any number of levels)
and are used for relatively small-scale insertions
within a base language, such as quotations or
names.

Language tag (visual) structure

In addition to the nesting structure of language tags,
there is a more visual component that influences
rendering of a document: the paragraph structure.
To properly model this typographical treatment it is
necessary to classify the language tags according to
whether a language segment contains only complete
paragraphs or is part of the running text of a single
paragraph. A begin/end pair of tags is called a
“block-level” tag if its body consists of complete
paragraphs and a “paragraph-level” tag otherwise.
As later examples will show, the typographical treat-
ment for these two types is often different.

A Tag Model for LATEX

To support the above model, including both nesting
of language tags and the differentiation between
block- and paragraph-level tags, the following tag
structure for a system like LATEX is proposed:
• A document language tag (implicit). This tag

can be used to attach language-related typo-
graphical actions that should not change even
if the document contains more than one base
language.
• Base-language tags: used only at top-level, no

nesting. These tags denote the major lan-
guage(s) within a document. In the case of
essentially mono-lingual documents the base
language would be the same as the document
language.
• Language-block tags: contain complete para-

graphs, nestable. These denote larger imbed-

dings either directly within the base language
or further down in the nesting hierarchy.
• Language-fragment tags: only within para-

graphs, nestable. These denote smaller imbed-
dings but are otherwise identical to language
block tags.
Note that since, at least in the logical structure

of a document, paragraphs can occur within para-
graphs, block tags can be nested within fragment
tags.

Document interfaces

As LATEX 2ε does not have built in support for
named attributes, its support for language changes
is best implemented by introducing additional lan-
guage tags (commands and environments). A con-
crete syntax for these tags could include the follow-
ing:
• A preamble declaration for the document lan-

guage (this is also the base language in mono-
lingual documents) with the language-label as
argument.
• A base-language change command with the

language-label as argument. This command
is declarative to highlight the flat structure of
base languages.
• A language-environment with the language-

label as argument and text as body. Such an
environment starts a new paragraph so as to
enforce the block-level nature of the tag.
• A language-command with the language-label

and text both as arguments. In contrast to the
environment, this command applies language-
related actions to its second argument, which
cannot directly contain full paragraphs.
For LATEX3 we shall probably normalize this

interface by supporting a language attribute on ap-
propriate tags. This would allow, for example, a
trivial translation of the language features currently
being proposed for HTML into LATEX for rendering
purposes. However, even in that case generic tags
for changing language are necessary as typical docu-
ments contain language changes that do not coincide
with the tag boundaries of other logical tags.2

Language-dependent Processing

Setting up the tags tells us only how to encode a
multi-lingual document. We now need to specify
how these tags affect the processing of the doc-
ument; how do we attach actions to them? Be-
fore answering this question we shall first discuss a

2 It is proposed that HTML 3.2 supports a tag for
this purpose.

200 TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting

Language Information in Structured Documents: A Model for Mark-up and Rendering

number of representative examples of the effects of
language on this processing, classified according to
the categories input, transformation and formatting.

The actions shown below are all commonly
related to a change of language within a docu-
ment. Nevertheless, it is not the case that each of
them should necessarily be implemented by attach-
ing them firmly to language changes. For some it
might be more appropriate to freeze them for the
whole document or to attach them to areas within
the document that do not coincide with language
boundaries.

Input

Input encodings Entering text in a certain lan-
guage often requires special input methods (this is
especially true for languages with complex scripts)
but even in cases where direct keyboard entry is
possible it might be necessary to add information
about the keyboard codepage that is to be used, so
as to interpret the source characters correctly. At
present LATEX supports variable interpretation of the
upper half of the 8-bit plane, thus allowing source
text to be 8-bit encoded in one of the many keyboard
encodings used world wide.

Short-refs With the development of language pack-
ages and the subsequent development of the Babel
system, it became common practice to extend the
mark-up language of LATEX using so called “short-
refs” as a compact method for inputting certain
commands. Short-refs are character sequences that
do not start with TEX’s escape character, i.e., usu-
ally ‘\’, but nevertheless act like commands. That
is, they do not represent the equivalent glyph se-
quence but have either additional effects (e.g., the
punctuation marks in French typography, which
produce additional space) or even denote completely
different actions (e.g., "" for a break point without
a hyphen).

In addition to the above short-refs, some TEX
fonts implement short-refs by using (or misusing)
the ligature mechanism to implement arbitrary in-
put syntax, e.g., ‘‘ generating “ or --- generating
an em-dash.

Short-refs can be used for different purposes:

• providing a compact input notation for com-
monly used textual commands such as charac-
ters with diacritical marks;

• providing a compact and readable input no-
tation for special applications, e.g., ==> for
\Longrightarrow;

• providing typographical features not otherwise
supported (e.g., extra space in front of punctu-
ation characters).

The first two items are related to input syntax and
not directly linked to the language of the current
text although historically they have been provided
by language packages, e.g., "a as a short-ref for
\"{a} was implemented by german.sty and within
Babel its meaning gets deactivated within regions
marked up as belonging to other languages.

The third item is directly related to language
since short-refs of this type are used to implement a
typographic style that is characteristic of a language
in such a way that the user is not forced to use
explicit mark-up in the document.

Transformations

Here, ‘transformations’ include only manipulations
of the source text that are independent of formatting
information (i.e., those that act entirely on the
logical document). Usually such transformations
enrich the document content in one way or the other
by using knowledge stored outside the document
source.

Generated text This is text that is not directly
encoded in the source document but is produced
from tags therein. Generated text can be classified
into two categories: content-related and structure-
related. Here content-related text is that generated
by tags that can appear anywhere in the source
text (a typical LATEX example would be the \today
command) while structure-related text refers to text
that is associated with a high level logical structure
(e.g., the heading produced for a bibliography or the
fixed text used in a figure caption).

While it is imaginable to keep structure-related
text in one language even though the surrounding
language changes, content-related text most likely
will have to change at every language tag.

Hyphenation The finding and marking of possible
hyphenation points is, perhaps, the most obvious
language-related transformation. Indeed, it is often
considered to be the defining characteristic of a
‘language’.

When using TEX this relationship is unfortu-
nately obscured by some technical details of the
implementation of hyphenation. One of these is
that TEX’s hyphenation does not depend only on
the ‘language’ but also on the current font encoding
(which can differ within a single language). Another
is TEX’s restriction that one can properly hyphenate
a whole multi-lingual paragraph only if the font en-
codings used therein share a single lower-case table

TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting 201

Frank Mittelbach and Chris Rowley

(and this is likely not to be the case if more than
one script is present).

Upper- and lower-case transformations The
mapping between upper- and lower-case characters
(for those writing systems that make such a distinc-
tion) is language-dependent (and not just script-
dependent): for example, in Turkish ı→I and i→İ
in contrast to the usual mapping i→I used in most
other languages. There can also be a one-to-many
mapping as for the German ß that maps to SS.

Formatting

Although each of the examples listed here has been
documented as characteristic of the typography as-
sociated with a particular language, they are all also
aspects of the design over which a document de-
signer may wish to have control that is independent
of the language of the text.

Direction The direction of the text and, more
generally, the writing system used are very strongly
associated with the language in use.

Micro-rendering This covers the details of ren-
dering at the level of individual glyphs and the
relationships, often complex, between the characters
which form the textual part of the logical document
and the glyphs used to render this text, especially
when aiming for the highest levels of typographic
quality. These details often depend on what glyphs
are provided by the available fonts. Also, when using
TEX, this level of formatting is typically controlled
entirely by the choice of font, whereas it should be
possible to specify such details independent of the
font since they also depend on the language in use.

Some examples:
• The precise positioning of diacritics depends on

the language; e.g., a language such as German
with many umlauts puts them closer to the top
of the basic letter than is typically done with
the diaeresis in English or French typography.
• The use of aesthetic ligatures varies from lan-

guage to language, e.g., the ffl-ligature is tra-
ditionally not used in Portuguese and Turkish
typography (implementing this is difficult in
TEX since these transformations are normally
controlled entirely by the font and there is no
simple way to ‘turn them off’).

Macro-rendering More global aspects of typogra-
phy can also be language-dependent, for example:
• the formatting of in-line quotes (i.e., what ‘quo-

tation marks’ to use);
• rendering of enumerations;

• aspects of page layout (e.g., float placement).
As with most language-related actions they

usually have a wide range of formatting possibilities
and can be considered to depend, at least partially,
on house style or other factors.

Attaching Actions to Change of Language

Having described some typical changes that need to
be made at a language tag, we now look at how to tie
particular actions to a particular tag, noting that it
is not sensible, for example, to change every aspect
of the formatting if only an in-line fragment of a few
words is to be in a different language.

Attaching actions to tags

First we note the following facts.
• The type of actions that are required at lan-

guage tags can be modeled by setting the values
of a collection of parameters to those appropri-
ate for the new language.
• Some actions may not make sense at certain

levels of the hierarchies. For example, while one
wants to use the correct hyphenation algorithm
at any level of the hierarchies changing of micro-
rendering, such as the positioning of diacritics,
might be applied only to language changes for
whole paragraphs but not for fragments.
• However, for most actions it is not possible to

specify one place in the hierarchies that will
produce the correct location of that action for
all documents. The correct place might, for
example, depend on document type or on a
particular house style.
There are two (at least) possibilities for spec-

ifying, for a particular document, where in the
tag hierarchy an action should be ‘attached’ (see
Figure 1). These are by the nesting-level in the
hierarchy of language tags or by the visual type of
the language tags as described in the section entitled
“Language tag (visual) structure”. These visual tag-
types implicitly define a partial hierarchy, from the
top: document, base, block, fragment.

In both cases an action is defined to be executed
down to a prescribed level in the hierarchy. As noted
above, different actions might be executed down to
different levels so there needs to be a mechanism
to specify this level for each action. To limit the
complexity of the model we think it is advisable
to assume that this stopping level depends on the
action but not on the language. It was pointed out
in Tsukuba that this is probably an oversimplifica-
tion, i.e., that there exist cases where it would be
better to model the formatting of language-related

202 TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting

Language Information in Structured Documents: A Model for Mark-up and Rendering

•

•

•

•

•

base language level

first nesting level

second nesting level

. . .

nth nesting level

A
A
A
A
A
A
A

•
•
• •
•
• •
•
•

base language level

paragraph level

nested paragraph level

. . .

frag-

ment

levels

frag-

ment

levels

Figure 1: The two hierarchies

���

@@@

•

•

•
•
•
•
•

••

@@@

���

•

•

document level

base language level

first nesting level
second nesting level

. . .

nth nesting level

block level

fragment level

nested fragment level

Figure 2: Tag hierarchy diagram (THD)

items by attaching of language/action pairs to levels.
However, we think that these cases are sufficiently
rare that they can be handled by the action itself.3

It is also possible to combine these two hierar-
chies and allow the attachment of actions to tags via
either hierarchy (see Figure 2). In this case, for each
action it is necessary to define:

• on which of the two hierarchies the stopping of
the action depends;

• down to what level the action is carried out in
that hierarchy.

Data structures for this model

For this model of language tags/actions, the system
needs to specify the contents of the following three
data structures.

Tag hierarchy diagram (THD) While combin-
ing the two hierarchies we have simplified their
structure (compare figures 1 and 2), i.e., multiple
nestings of paragraphs are collapsed into a single
node. At the same time a new root node (document-
level) was added. This node serves as an anchor
point for typographic requirements that should stay

3 An action that depends both on language and level could
be specified in the model by executing it on all levels with an
additional conditional within the action body testing for the
current language.

fixed throughout the document even if the base
language changes.

The required number of significant nestings in
the hierarchy of nesting-levels is an open question
but probably n = 3 is sufficient to specify typical
formatting requirements.

The two end points of the hierarchies (nth

nesting-level and nested-fragment-level) are com-
bined as they essentially mean to carry out attached
actions in all cases, thus it does not matter on which
hierarchy they are specified.

Another interesting point is that the two base-
language-levels,one from each hierarchy, are com-
bined.4

Nevertheless, it should be noted that the “level”
of a tag within the THD is logically described by a
pair of nodes (one on each hierarchy) even though
in some cases these nodes collapse into one.

Language actions table (LAT) This two-
dimensional table (indexed by parameter-group and
language-label) stores the effect of each action (i.e.,
the value for a parameter-group) for each language
(possibly only a default value if no value has been
explicitly defined for that language). Each entry is
an expression that returns a set of values appropri-
ate to the parameter-group.

4 From this it follows that in this model a base language
change is only allowed between paragraphs.

TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting 203

Frank Mittelbach and Chris Rowley

It may be possible5 to also allow special actions
to be specified, such as:
• leave unchanged;
• use some default (e.g. the value for the docu-

ment language).

Parameter assignment map (PAM) This one-
dimensional table maps each each action (modeled
by a parameter-group) to a single node in the THD.

Such an assignment means that this parameter
group changes its value (using the method specified
in the LAT) at all levels down to (and including) the
node to which it is mapped.

Special Regions

The scheme we have outlined so far will work well
for the main text of many documents but it needs
to be supplemented in order to handle formatting of
the following material (called special regions):
• regions that contain text which has moved from

other parts of the document, e.g., table of con-
tents, running heads;
• regions of text that are first formatted and then

the whole block is moved, e.g., (from LATEX)
floating tables, footnotes;
• regions that can contain elements breaking the

type hierarchy, e.g., paragraphs in table-cells.
There are several problems that arise when

“moving things around” in a document: one of
these, which arises only when logical (unformatted)
text is being moved, is the need to move language
information with the moving text. This is needed
even if the text being moved is in the document
language since this may not be the current language
at the point to which it moves. Thus the data-type
for ‘logical stuff being moved’ must be the text and
a language-label (describing its language).

Formatting special regions

A problem that affects the formatting of all special
regions is how to specify the language to be used
and the effective level of language tags contained
within the special region. It is not possible to
simply extend the THD and PAM from the main
part of the document since these assume that the
nesting of the language tags in the logical document
is faithfully represented in the formatted document.
This is very clearly not the case with regions such as
floats or end-notes which appear visually in totally
unrelated parts of the document. It is also not
true for paragraphs within tables since these can

5 Such details can have large effects on the efficiency of
the implementation, thus we are being cautious here.

be, logically, paragraphs within paragraphs, and our
classification of language tags into types does not
allow for this.

One possible solution to this problem is to allow
the specification of a local PAM for each type of
special region. This requires:

• a method to set the starting-language for the
region;

• the specification of a local PAM for the region.

The disadvantage of this solution is its inherent
complexity: for each special region the designer of
a document class needs to specify a full mapping
of all language-related actions to the tag hierarchy
(the local PAM). Since the numbers of both the
special regions and the language-related actions are
potentially unlimited, this would result in either a
very complex set-up mechanism or the use of general
defaults (e.g., the local PAM nearly always inherits
from the global document PAM) in which case the
solution is unnecessarily complicated.

A practical solution

A simpler solution is to use the PAM from the main
document but to allow the specification, for each
type of special region, of how the information from
the PAM is used. This would be done by specifying
the following:

• a method to set the starting-language for the
region;

• the actual initialisation-level (init-level) for the
change to this starting language;

• the effective level (inner-level), as far as imbed-
ded tags are concerned, of this change to the
starting-language for the region.

We now give an expanded description of these items.

Starting language In the case of special regions
that receive unformatted text the starting-language
will directly affect only the text generated by the
region’s tags themselves as each bit of received text
will carry its own language label (see the section
entitled “Special Regions”). In the case of regions
that move after being formatted it defines the de-
fault language used when formatting this region.

Initialization At the start of the region, actions
are executed as if the region started with a tag
whose level (in the THD, i.e., a pair of nodes) is
init-level using this starting-language. This results
in setting parameters to values suitable for that
starting-language whilst allowing for a region to
move to a different visual context.

204 TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting

Language Information in Structured Documents: A Model for Mark-up and Rendering

Inner processing Within the region, language
tags are processed as if the region started with a
tag whose level (in the THD) is inner-level (inner-
level must be at least as deep6 as init-level in the
THD). This allows finer control over the subset of
actions executed at imbedded language tags.

Interfaces for the Rendering Model

The following interfaces will be provided for use by
writers of class and package files:
• specifying the THD (this will probably be fixed,

at least in the first version);
• specifying entries in the PAM;
• specifying entries in the LAT;
• specifying explicitly that a language-command

(i.e., parameter-group) will potentially be used
by the current package or class;7

6 An alternative model would be to also allow inner-level
to be one less than init-level. This would mean that language
tags within the special region are acting as language changes
on the same level as the starting language of the region.

7 These declarations allow the local customizations for all
language actions to be stored in one place (e.g., PAM or LAT
modifications); the system can then select only those that are
actually needed for the current document.

• specifying the starting-language and init/inner
levels for special regions;
• handling language information for moving text.

In addition to the new commands and environ-
ments outlined in the section entitled “Document
interfaces”, the following interfaces will be provided
for use in documents (the first two must be in the
preamble):
• specifying the document-language;
• specifying all the languages used in a document;
• possibly an interface for overwriting the start-

ing language of a particular special region
The second item above is not strictly necessary as
the information can be obtained by processing the
document; however, a large saving of time and space
can be made if the full list of languages actually used
is specified in the preamble.

TUGboat, Volume 18 (1997), No. 3 — Proceedings of the 1997 Annual Meeting 205

