
�

�
“tlgc2” — 2007/6/15 — 15:36 — page iii — #3

�

�

�

�

�

�

The LATEX Graphics
Companion

Second Edition

Michel Goossens
Frank Mittelbach
Sebastian Rahtz

Denis Roegel
Herbert Voß

Upper Saddle River, NJ • Boston • Indianapolis • San Francisco
New York • Toronto • Montreal • London • Munich • Paris • Madrid

Capetown • Sydney • Tokyo • Singapore • Mexico City

�

�
“tlgc2” — 2007/6/15 — 15:36 — page iv — #4

�

�

�

�

�

�

Many of the designations used by manufacturers and sellers to distinguish their products are claimed
as trademarks. Where those designations appear in this book, and Addison-Wesley was aware of a
trademark claim, the designations have been printed with initial capital letters or in all capitals.

The authors and publisher have taken care in the preparation of this book, but make no expressed or
implied warranty of any kind and assume no responsibility for errors or omissions. No liability is
assumed for incidental or consequential damages in connection with or arising out of the use of the
information or programs contained herein.

The publisher offers discounts on this book when ordered in quantity for bulk purchases and special
sales. For more information, please contact:

U.S. Corporate and Government Sales
(800) 382-3419
corpsales@pearsontechgroup.com

For sales outside of the United States, please contact:

International Sales
international@pearsoned.com

Visit Addison-Wesley on the Web: www.awprofessional.com

Library of Congress Cataloging-in-Publication Data

The LaTeX Graphics companion / Michel Goossens ... [et al.]. -- 2nd ed.
p. cm.

Includes bibliographical references and index.
ISBN 978-0-321-50892-8 (pbk. : alk. paper)
1. LaTeX (Computer file) 2. Computerized typesetting. 3. PostScript

(Computer program language) 4. Scientific illustration--Computer programs.
5. Mathematics printing--Computer programs. 6. Technical
publishing--Computer programs. I. Goossens, Michel.

Z253.4.L38G663 2008
686.2’2544536–dc22 2007010278

Copyright © 2008 by Pearson Education, Inc.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or
transmitted, in any form, or by any means, electronic, mechanical, photocopying, recording, or
otherwise, without the prior consent of the publisher.

The foregoing notwithstanding, the examples contained in this book and obtainable online on
CTAN are made available under the LATEX Project Public License (for information on the LPPL,
see www.latex-project.org/lppl).

For information on obtaining permission for use of material from this work, please submit a written
request to:

Pearson Education, Inc.
Rights and Contracts Department
75 Arlington Street, Suite 300
Boston, MA 02116
Fax: (617) 848-7047

ISBN 10: 0-321-50892-0
ISBN 13: 978-0-321-50892-8

Text printed in the United States on recycled paper at Courier in Westford, Massachusetts.

First printing, July 2007

�

�
“tlgc2” — 2007/6/15 — 15:36 — page v — #5

�

�

�

�

�

�

We dedicate this book to the hundreds of LATEX developers
whose contributions are showcased in it,
and we salute their enthusiasm and hard work.

We would also like to remember with affection and thanks
Daniel Taupin, whose MusiXTEX system is described in
Chapter 9, and who passed away in 2003, a great loss to our community.

�

�
“tlgc2” — 2007/6/15 — 15:36 — page vi — #6

�

�

�

�

�

�

Rhapsodie
pour piano

Composé partiellement vers 1975, terminé en août 2002 Daniel TAUPIN

ă
1

Piano I
G
2

2
2
2

2
2

ff

Allegro (˘ = 50)

#
˛ˇ

˛ˇ

!
tr EEEEEEE¯ ˇ ˇ

ăăăă
ˇ

tr EEEEEEE
¯ ˇ ˇ

ăăăă
ˇ

!
tr EEEEEEE¯ ˇ ˇ

ăăăă
ˇ

tr EEEEEEE
¯ ˇ ˇ

ăăăă
ˇ

!
tr EEEEEEE¯ ˇ ˇ

ăăăă
ˇ

tr EEEEEEE
¯ ˇ ˇ

ăăăă
ˇ

!
tr EEEEEEE¯ ˇ ˇ

ăăăă
ˇ

tr EEEEEEE
¯ ˇ ˇ

ăăăă
ˇ

!
tr EEEEEEE¯ ˇ ˇ

ăăăă
ˇ

tr EEEEEEE¯ ˇ ˇ
ăăăă
ˇ

ă
6

I
G
2

2

!
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE¯ ˇ ˇ
ęęęę
ˇ

!
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE
¯ ˇ ˇ

ęęęę
ˇ

!
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE
¯ ˇ ˇ

ęęęę
ˇ

#
¯¯
˘ ; ˇ` ěěęę̌ ˇ ˇ

ğ̌ğğğ̌

»

» ˘`˘`

˘`

!? ˇ -
ˇ
? (ˇ

#
¯¯
˘ ; ˇ` ěě

ęę̌ ˇ ˇ
ğ̌ğğğ̌

„

„

ă
12

I
G
2

2
`

` ˘` ˘`

˘`

!?
ˇ (ˇ
? (ˇ

#
¯¯
˘ < ˇ` §§

ăă̌ ˇ ˇ
ą̌ąąą̌

—

— ˘`˘`

˘`

!

rit.

? ˇ (ˇ
? (ˇ

#
¯¯
¯¯
¯
|

‚

‚ ˘`˘`
‚

‚ ˘`˘`
› 4̀̆

!
>
>

ff

a tempo

#
˛ˇ

˛ˇ

!¯
tr EEEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEEE
¯ ˇ ˇ

ęęęę
ˇ

ă
18

I
G
2

2

!¯
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE
¯ ˇ ˇ

ęęęę
ˇ

!¯
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE
¯ ˇ ˇ

ęęęę
ˇ

!¯
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE
¯ ˇ ˇ

ęęęę
ˇ

!
¯
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE¯ ˇ ˇ
ęęęę
ˇ

!
¯
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE¯ ˇ ˇ
ęęęę
ˇ

!
¯
tr EEEEEE¯ ˇ ˇ

ęęęę
ˇ

tr EEEEEE
¯ ˇ ˇ

ęęęę
ˇ

ă
24

I
G
2

2

!
¯
tr EEEEEEEE¯ ˇ ˇ

ăăăă
ˇ

tr EEEEEEEE
¯ ˇ ˇ

ăăăă
ˇ

#
¯¯
˘ = ˇ` §§ąą̌ ˇ ˇ

ş̌şşş̌

ı

ı ˘` ˘`

˘`

!
? ˇ-
ˇ

? (ˇ

#
¯¯
˘˘ = ˇ` śśşş̌ ˇ ˇ

ş̌şşş̌

ı

ı ˘`˘`

˘`

!
? ˇ-ˇ
? ˇ (ˇ

ă
29

I
G
2

2

#
¯¯
˘˘˘ ˚ ˇ` §§ăă̌ ˇ ˇ

ą̌ąąą̌

—

— ˘`˘`

˘`

!
? ˇ (ˇ
? ˇˇ (ˇ

#
¯ ¯

4̆̆̆ ˚ ˇ` §§ă
ă̌\̌ ˇ
ą̌ąąą\̌

—

— ˘`˘`

˘`

!

rit.

? ˇ (ˇ
? \̌̌ (ˇ

#¯
¯
¯¯¯

!

|

˘`
˘`

pC ˘`˘`
› 4̀̆

!
>
>

Rhapsodie — 26 mars 2003 — (D. Taupin) 1

Music composed by Daniel Taupin and typeset with MusiXTEX

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 1 — #1

�

�

�

�

�

�

C H A P T E R 1

Graphics with LATEX

1.1 Graphics systems and typesetting . 2
1.2 Drawing types . 3
1.3 TEX’s interfaces . 6
1.4 Graphics languages . 10
1.5 Choosing a package. 21

The phrase “A picture paints a thousand words” seems to have entered the English lan-
guage thanks to Frederick R. Barnard in Printer’s Ink, 8 December 1921, retelling a Chinese
proverb.1 However, while LATEX is quite good at typesetting words in a beautiful manner,
LATEX manuals usually tell you little or nothing about how to handle graphics. This book at-
tempts to fill that gap by describing tools and TEXniques that let you generate, manipulate,
and integrate graphics with your text.

In these days of the multimedia PC, graphics appear in various places. With many prod-
ucts we get ready-to-use collections of clipart graphics; in shops we can buy CD-ROMs with

“the best photos” of important places; and so forth. As we shall see, all such graphics can be
included in a LATEX document as long as they are available in a suitable format. Fortunately,
many popular graphic formats either are directly supported or can be converted via a pro-
gram that allows transformation into a supported representation.

If you want to become your own graphic artist, you can use stand-alone dedicated
drawing tools, such as the freely available dia (www.gnome.org/projects/dia) and
xfig (www.xfig.org/userman) on Linux, or the commercial products Adobe Illustrator
(www.adobe.com/illustrator) or Corel Draw (www.corel.com/coreldraw) on a
Mac or PC. Spreadsheet programs, or one of the modern calculation tools like Mathematica

1Paul Martin Lester (commfaculty.fullerton.edu/lester/writings/letters.html) states that
the literal translation of the “phony” Chinese proverb should rather be “A picture’s meaning can express ten thou-
sand words”. He, rightly, emphasizes that pictures cannot and should not replace words, but both are comple-
mentary and contribute equally to the understanding of the meaning of a work.

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 2 — #2

�

�

�

�

�

�

2 GRAPHICS WITH LATEX

(www.wolfram.com/mathematica), Maple (www.maplesoft.com/maple), and MAT-
LAB (www.mathworks.com/matlab), or their freely available GNU variant Octave (www.
octave.org) and its plotting complements Octaviz (octaviz.sourceforge.net) and
Octplot (octplot.sourceforge.net), can also produce graphics by using one of their
many graphical output representations. With the help of a scanner or a digital camera you
can produce digital photos, images of hand-drawn pictures, or other graphics that can be
manipulated with their accompanying software. In all these cases it is easy to generate files
that can be directly referenced in the LATEX source through the commands of the graphics
package described in Chapter 2.

If needed, LATEX can also offer a closer integration with the typesetting system than that
possible by such programs. Such integration is necessary if you want to use the same fonts
in text and graphics, or more generally if the “style” of the graphics should depend on the
overall style of the document. Close integration of graphics with the surrounding text clearly
requires generation of the graphic by the typesetting system itself, because otherwise any
change in the document layout style requires extensive manual labor and the whole process
becomes very error-prone.

∗ ∗ ∗

This chapter considers graphic objects from different angles. First. we look at the require-
ments that various applications impose on graphic objects. Next, we analyze the types of
drawings that appear in documents and the strategies typically employed to generate, in-
tegrate, and manipulate such graphics. Then, we discuss the interfaces offered by TEX for
dealing with graphic objects. Armed with this knowledge, we end the chapter with a short
survey of graphics languages built within and around TEX. This overview will help you se-
lect the right tool for the job at hand. In fact, the current chapter also gives some examples
of languages and approaches not covered in detail elsewhere in the book. Thus this survey
should provide you with enough information to decide whether or not to follow the pointers
and obtain such a package for a particular application.

1.1 Graphics systems and typesetting
When speaking about “graphic objects”, we should first define the term. One extreme posi-
tion is to view everything put on paper as a graphic object, including the characters of the
fonts used. This quite revolutionary view was, in fact, adopted in the design of the page de-
scription language PostScript, in which characters can be composed and manipulated by
exactly the same functions as other graphic objects (we will see some examples of this in
Chapters 5 and 6, which describe PSTricks and its support packages).

Most typesetting systems, including TEX, do not try to deploy such a general model but
instead restrict their functional domain to a subset of general graphic objects—for exam-
ple, by providing very sophisticated functions to place characters, resolve ligatures, etc., but
omitting operators to produce arbitrary lines, construct and fill regions, and so forth. As a
result the term “graphics” for most LATEX users is a synonym for “artwork”, thereby ignoring
the fact that LATEX already has a graphics language—the picturemode.

ch-graphics.tex,v: 1.47 2007/06/01

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 3 — #3

�

�

�

�

�

�

1.2 Drawing types 3

When discussing the graphical capabilities of an ideal typesetting system, we must re-
member that different applications have different, sometimes conflicting requirements:

• One extreme is the need for complete portability between platforms; another is to take
into account even differences in the way printers put ink onto paper.

• A graphic might need to be correctly scaled to a certain size depending on factors of the
visual environment created by the typesetting system, e.g., the measure of the text.

• It is also possible that parts of the graphic should not scale linearly. For example, it
might be important for readability to ensure that textual parts of a graphic do not be-
come smaller or larger than some limit. It might also be required that, when a graphic
is scaled by, say, 10% to fit the line, any included text must stay the same, so as to avoid
making it larger than the characters in the main document body.

• It might be required that the graphical object be closely integrated with the surrounding
text, such as by using the same fonts as in other parts of the document or more gener-
ally by containing objects that should change their appearance if the overall style of the
document is changed. (The latter is especially important if the document is described
by its logical content rather than by its visual appearance, with the intention of reusing
it in various contexts and forms.)

As LATEX is a general-purpose typesetting system used for all types of applications, the pre-
ceding requirements and more might arise in various situations. As we will see throughout
this book, a large number of them can be handled with grace, if not to perfection. In some
cases an appropriate solution was anything but obvious and developing the mature macro
packages and programs we now have took a decade or more of work.

1.2 Drawing types
The typology of graphics at the beginning of this chapter focused on the question of the
integration with the LATEX system, and divided the graphics into externally and internally
generated ones. A different perspective would be to start from the types of graphics we might
encounter in documents and discuss possible ways to generate and incorporate them.

A first class of graphics to be included are treated by LATEX as a single object, a “black
box”, without an accessible inner structure. LATEX, via its graphics package (described in
Chapter 2), is interested only in the rectangular dimensions of the graphic image, its “bound-
ing box”. The graphics will be included in the output “as is”, possibly after some simple ma-
nipulation, such as scaling or rotation. On top of that LATEX can also produce a caption and
legend to allow proper referencing from within the document. The main categories are as
follows:

1. Free-hand pictures drawn without a computer, such as the drawing of a glass bead in
Figure 1.1. For use in LATEX, such a graphic must to be transformed into a digital image,
using, for example, a scanner.

ch-graphics.tex,v: 1.47 2007/06/01

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 4 — #4

�

�

�

�

�

�

4 GRAPHICS WITH LATEX

Figure 1.1: Pen and ink drawing of a bead
Figure 1.2: Bitmap drawing output
created with GIMP

2. “Art” graphics drawn with bitmap tools on a computer, such as the example in Figure 1.2,
which are to some extent the computer equivalents of pen and ink drawings. This draw-
ing was created with GIMP, the GNU Image Manipulation Program (www.gimp.org),
using a deliberately crude technique. The distinctive characteristic of this type of draw-
ing is that the resolution chosen in the generation process cannot easily be changed
without loss of quality (or alternatively without a lot of manual labor). In other respects
such a picture is like a free-hand drawing: there is generally no desire to integrate the
drawing with the text or to worry about conformity of typefaces.

3. Photographs either created directly using a digital camera or scanned like hand-drawn
pictures. In the latter case the continuous tones of the photograph are converted into
a distinct range of colors or gray levels (black-and-white photographs treated in this
way are known as half-tones). Full-color reproduction requires sophisticated printing
techniques, but this issue arises at the printing stage and does not normally affect the
typesetting. Figure 1.3 shows how LATEX can distort the image.

A second class of graphics is the “object-oriented” type, where the information is stored
in the form of abstract objects that incorporate no device-dependent information (unlike
bitmap graphics, where the storage format just contains information about whether a cer-
tain spot is black or white, making them resolution-dependent). This device independence
makes it easy to reuse the graphic with different output devices and allows us to manipulate
individual aspects of the graphic during the design process.

There are essentially three types of such graphics systems: one in which LATEX mainly
remains passive (it just takes into account the bounding box of the picture), and two others
that relate to graphics that contain more complex text, in particular formulae. For the latter
types it is important to use LATEX to typeset text within the graphic because the symbols in
formulae and their typeset form carry a precise semantic meaning. Therefore one must take
great care to ensure that their visual representation is identical in both text and associated
graphics.

1. Self-contained object-oriented graphics. The ducks of Figure 1.4, which was produced
with Adobe Illustrator, were created by drawing one object in terms of curves and then

ch-graphics.tex,v: 1.47 2007/06/01

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 5 — #5

�

�

�

�

�

�

1.2 Drawing types 5

Figure 1.3: Digitally transformed image
(vertically stretched)

HUMANIST
rules
OK

Figure 1.4: Object-oriented drawing

copying and rotating it many times. This type of drawing often also contains textual
annotations comparable to typeset text. Although it is usually possible to add text to
the graphic with external tools such Illustrator, it is not in general possible to use LATEX
to typeset this text (although psfrag provides a solution in some circumstances).

2. Algorithmic display graphics (e.g., histograms, graphs). These drawings are created with-
out human interaction but often contain text that should match the document text. The
scale and distance between elements is an essential characteristic of the drawing.
Extensive plotting and diagram facilities are provided by many LATEX packages building
on the picturemode, by generic TEX packages such as PICTEX [139], DraTex [39], and
tikz [115]; and by PSTricks (see Chapters 5 and 6). All these solutions let us deploy the
full power of LATEX’s typesetting functions within textual parts of the graphic and thus
integrate it perfectly with surrounding document elements.

3. Algorithmic structural graphics, which can be derived from a textual representation. Un-
like with the previous category, often merely the spatial relationship between elements
is important with these graphics, not the elements’ exact position or size. Examples are
category diagrams, chemical formulae, trees, and flowcharts. Such graphics are natu-
ral candidates for generation by graphics languages internal to LATEX that provide high-
level interfaces which focus on objects and relationships and decide final placement and
layout automatically.
Of the general-purpose languages, the �������� system (Chapters 3 and 4) is per-
haps the most flexible one for this type of graphics, although PICTEX, XY-pic (Chapter 7),
PSTricks (Chapters 5 and 6), and DraTex are also suitable. They are based on different
paradigms, and differ greatly in approach, focus, and user interface, but they all have
found their place in the LATEX world. We describe small specialized languages tailored
for specific application domains such as physics, chemistry or electronics diagrams
(Chapter 8), music (Chapter 9), and games (Chapter 10). For special applications such
as tree drawing, many other LATEX languages are available as well (see [13], for instance).

ch-graphics.tex,v: 1.47 2007/06/01

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 6 — #6

�

�

�

�

�

�

6 GRAPHICS WITH LATEX

As we see, many types of graphics exist, each with its own requirements. The first three
types essentially present themselves as black boxes to LATEX and thus their use within a LATEX
document involves no more than their inclusion and in some cases their manipulation as a
whole. The necessary functionality is discussed in detail in Chapter 2.

In scientific texts, the other types of graphics are by far the more common. Examples in-
clude maps [119], chemical structures, or commutative diagrams. They are for the most part
based on an object-oriented approach, specifying objects and their relations in an abstract
way using a suitable language. Close integration with the surrounding text can be achieved,
if needed, by choosing one of the graphics languages described in this book.

In some cases interactive drawing programs can be instructed to output their results in
one of the graphics languages built directly on top of LATEX’spicturemode. Widely used ex-
amples under Linux are dia and xfig, whose pictures, although externally produced, can be
influenced by layout decisions within the document. Note, however, that such mechanically
produced LATEX code is normally not suitable for further manual editing and manipulation
is practically limited to layout facilities implemented by the chosen graphics language. Nev-
ertheless, in certain situations this approach can offer the best of two worlds.

1.3 TEX’s interfaces
To understand the merits of the different approaches to graphics as implemented by vari-
ous packages, it is helpful to consider yet another point of view: the interfaces provided by
TEX for dealing with them. Describing the methods by which graphics can be generated, in-
cluded, or manipulated will give you some feeling for such important issues as portability,
quality, and resource requirements of individual solutions. We assume that the reader has a
reasonable understanding of how TEX works—that is, the progression from source file to a
DVI file that is processed by a driver to produce printed pages. Of course, the DVI stage can
be skipped when using pdflatex, but the various ways of including the graphics material are
still identical.

In the following we first look at ways of including externally generated graphics (i.e.,
those that appear as black boxes to TEX) and methods to manipulate them. Then we consider
interfaces provided to build graphics languages within TEX.

1.3.1 Methods of integration
TEX offers two major facilities for integrating graphics as a whole: one involving the
\special command, and the other using the font interface.

Using \special commands

The TEXbook [70] does not describe ways to directly include externally generated graphics.
The only command available is the \special command, which by itself does nothing, but
does enable us to access capabilities that might be present in the post-processor (DVI driver
or pdflatex). To quote Knuth [70, page 229]:

The\special command enables you to make use of special equipment that might
be available to you, e.g., for printing books in glorious TEXnicolor.

ch-graphics.tex,v: 1.47 2007/06/01

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 23 — #1

�

�

�

�

�

�

C H A P T E R 2

Standard LATEX Interfaces

2.1 Inclusion of graphics files . 23
2.2 Manipulating graphical objects. 36
2.3 Line graphics . 42

Since the introduction of LATEX 2ε in 1994, LATEX has offered a uniform syntax for including
every kind of graphics file that can be handled by the different drivers. In addition, all kinds
of graphic operations (such as resizing and rotating) as well as color support are available.

These features are not part of the LATEX 2ε kernel, but rather are loaded by the standard,
fully supported color, graphics, and graphicx extension packages. Because the TEX program
does not have any direct methods for graphic manipulation, the packages must rely on fea-
tures supplied by the “driver” used to print the dvi file. Unfortunately, not all drivers sup-
port the same features, and even the internal method of accessing these extensions varies
among drivers. Consequently, all of these packages take options, such as dvips, to specify
which external driver is being used. Through this method, unavoidable device-dependent
information is localized in a single place, the preamble of the document.

In this chapter we start by looking at graphics file inclusion. LATEX offers both a simple in-
terface (graphics), which can be combined with the separate rotation and scaling commands,
and a more complex interface (graphicx), which features a powerful set of manipulation op-
tions. The chapter concludes with a discussion of the pict2e package, which implements the
driver encapsulation concept for line graphics and with a brief description of the curve2e
package, which is not part of the “standard LATEX interface” but nevertheless represents an
interesting extension to pict2e. Color support is covered in Chapter 11.

2.1 Inclusion of graphics files
The packages graphics and graphicx can both be used to scale, rotate, and reflect LATEX ma-
terial or to include graphics files prepared with other programs. The difference between

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 24 — #2

�

�

�

�

�

�

24 STANDARD LATEX INTERFACES

Table 2.1: Overview of color and graphics capabilities of device drivers

Option Author of Driver Features

dvips T. Rokicki All functions (reference driver; option also used by xdvi)
dvipdf S. Lesenko All functions
dvipdfm S. Lesenko All functions
dvipsone Y&Y All functions
dviwin H. Sendoukas File inclusion
emtex E. Mattes File inclusion only, but no scaling
pdftex Hàn Thế Thành All functions for pdftex program
pctexps PCTeX File inclusion, color, rotation
pctexwin PCTeX File inclusion, color, rotation
pctex32 PCTeX All functions
pctexhp PCTeX File inclusion only
truetex Kinch Graphics inclusion and some color
tcidvi Kinch TrueTeX with extra support for Scientific Word
textures Blue Sky All functions for Textures program
vtex Micropress All functions for VTeX program

the two is that graphics uses a combination of macros with a “standard” or TEX-like syn-
tax, while the “extended” or “enhanced” graphicx package presents a key/value interface for
specifying optional parameters to the \includegraphicsand \rotatebox commands.

2.1.1 Options for graphics and graphicx
When using LATEX’s graphics packages, the necessary space for the typeset material after per-
forming a file inclusion or applying some geometric transformation is reserved on the out-
put page. It is, however, the task of the device driver (e.g., dvips, xdvi, dvipsone) to perform
the actual inclusion or transformation in question and to show the correct result. Given that
different drivers may require different code to carry out an action, such as rotation, one
has to specify the target driver as an option to the graphics packages—for example, option
dvips if you use one of the graphics packages with Tom Rokicki’s dvips program, or option
textures if you use one of the graphics packages and work on a Macintosh using Blue Sky’s
Textures program.

Some drivers, such as previewers, are incapable of performing certain functions. Hence
they may display the typeset material so that it overlaps with the surrounding text. Table 2.1
gives an overview of the more important drivers currently supported and their possible lim-
itations. Support for older driver programs exists usually as well—you can search for it on
CTAN.

The driver-specific code is stored in files with the extension .def—for example,
dvips.def for the PostScript driver dvips. As most of these files are maintained by third
parties, the standard LATEX distribution contains only a subset of the available files and not
necessarily the latest versions. While there is usually no problem if LATEX is installed as part
of a full TEX installation, you should watch out for incompatibilities if you update the LATEX
graphics packages manually.

ch-stdgraph.tex,v: 1.46 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 25 — #3

�

�

�

�

�

�

2.1 Inclusion of graphics files 25

It is also possible to specify a default driver using the \ExecuteOptions declaration
Setting a default driverin the configuration filegraphics.cfg. For example,\ExecuteOptions{dvips}makes

the dvips drivers become the default. In this case the graphics packages pick up the driver
code for the dvips TEX system on a PC if the package is called without a driver option. Most
current TEX installations are distributed with a ready-to-use graphics.cfgfile.

In addition to the driver options, the packages support some options controlling which
features are enabled (or disabled):

draft Suppress all “special” features, such as including external graphics files in the final
output. The layout of the page will not be affected, because LATEX still reads the size in-
formation concerning the bounding box of the external material. This option is of par-
ticular interest when a document is under development and you do not want to down-
load the (often huge) graphics files each time you print the typeset result. When draft
mode is activated, the picture is replaced by a box of the correct size containing the
name of the external file.

final The opposite of draft. This option can be useful when, for instance, “draft” mode
was specified as a global option with the \documentclass command (e.g., for show-
ing overfull boxes), but you do not want to suppress the graphics as well.

hiresbb In PostScript files, look for bounding box comments that are of the form
%%HiResBoundingBox (which typically have real values) instead of the standard
%%BoundingBox (which should have integer values).

hiderotate Do not show the rotated material (for instance, when the previewer cannot
rotate material and produces error messages).

hidescale Do not show the scaled material (for instance, when the previewer does not
support scaling).

With the graphicx package, the options draft, final, and hiresbb are also available lo-
cally for individual \includegraphics commands, that is, they can be selected for indi-
vidual graphics.

2.1.2 The \includegraphics syntax in the graphics package
With the graphics package, you can include an image file by using the following command:

\includegraphics*[llx,lly][urx,ury]{file}

If the [urx,ury] argument is present, it specifies the coordinates of the upper-right corner
of the image as a pair of TEX dimensions. The default units are big (PostScript) points; thus
[1in,1in] and[72,72] are equivalent. If only one optional argument is given, the lower-
left corner of the image is assumed to be located at [0,0]. Otherwise, [llx,lly] specifies
the coordinates of that point. Without optional arguments, the size of the graphic is deter-
mined by reading the external file (containing the graphics itself or a description thereof, as
discussed later).

ch-stdgraph.tex,v: 1.46 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 26 — #4

�

�

�

�

�

�

26 STANDARD LATEX INTERFACES

%!PS-Adobe-2.0
%%BoundingBox:100 100 150 150
100 100 translate % put origin at 100 100
0 0 moveto % define current point
50 50 rlineto % trace diagonal line
50 neg 0 rlineto % trace horizontal line
50 50 neg rlineto % trace other diagonal line
stroke % draw (stroke) the lines
0 0 moveto % redefine current point

/Times-Roman findfont % get Times-Roman font
50 scalefont % scale it to 50 big points

setfont % make it the current font
(W) show % draw an uppercase W

Figure 2.1: The contents of the file w.eps

The starred form of the \includegraphics command “clips” the graphics image
to the size of the specified bounding box. In the normal form (without the *), any part of
the graphics image that falls outside the specified bounding box overprints the surrounding
text.

The examples in the current and next sections use a small PostScript program (in a
file w.eps) that paints a large uppercase letter “W” and a few lines. Its source is shown in
Figure 2.1. Note the BoundingBoxdeclaration, which stipulates that the image starts at the
point 100, 100 (in big points), and goes up to 150, 150; that is, its natural size is 50 big
points by 50 big points.

In the examples we always embed the \includegraphics command in an \fbox
(with a blue frame and zero \fboxsep) to show the space that LATEX reserves for the in-
cluded image. In addition, the baseline is indicated by the horizontal rules produced by the
\HR command, defined as an abbreviation for \rule{1em}{0.4pt}.

The first example shows the inclusion of the w.eps graphic at its natural size. Here the
picture and its bounding box coincide nicely.

left W right

\usepackage{graphics,color}
\newcommand\HR{\rule{1em}{0.4pt}}
\newcommand\bluefbox[1]{\textcolor{blue}{%

\setlength\fboxsep{0pt}\fbox{\textcolor{black}{#1}}}}

left\HR \bluefbox{\includegraphics{w.eps}}\HR right
Example

2-1-1

Next, we specify a box that corresponds to a part of the picture (and an area outside
it) so that some parts fall outside its boundaries, overlaying the material surrounding the
picture. If the starred form of the command is used, then the picture is clipped to the box
(specified as optional arguments), as shown on the right.

ch-stdgraph.tex,v: 1.46 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 27 — #5

�

�

�

�

�

�

2.1 Inclusion of graphics files 27

Example

2-1-2

leftW middleW right

\usepackage{graphics,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\includegraphics

[120,120][150,180]{w.eps}}%
\HR middle\HR
\bluefbox{\includegraphics*

[120,120][150,180]{w.eps}}%
\HR right

In the remaining examples we combine the \includegraphics command with
other commands of the graphics package to show various methods of manipulating an in-
cluded image. (Their exact syntax is discussed in detail in Section 2.2.) We start with the
\scalebox and \resizebox commands. In both cases we can either specify a change in
one dimension and have the other scale proportionally, or specify both dimensions to distort
the image.

Example

2-1-3 left W middle W right

\usepackage{graphics,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\scalebox{.5}{%
\includegraphics{w.eps}}}%

\HR middle\HR
\bluefbox{\scalebox{.5}[1.5]{%
\includegraphics{w.eps}}}%

\HR right

Example

2-1-4 left W middle W right

\usepackage{graphics,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\resizebox{10mm}{!}{%
\includegraphics{w.eps}}}%

\HR middle\HR
\bluefbox{\resizebox{20mm}{10mm}{%
\includegraphics{w.eps}}}%

\HR right

Adding rotations makes things even more interesting. Note that in comparison to Ex-
ample 2-1-1 on the facing page the space reserved by LATEX is far bigger. LATEX “thinks” in
rectangular boxes, so it selects the smallest size that can hold the rotated image.

Example

2-1-5 left W right

\usepackage{graphics,color}
% \bluefbox and \HR as before

left\HR
\bluefbox{\rotatebox{25}{%
\includegraphics{w.eps}}}%

\HR right

ch-stdgraph.tex,v: 1.46 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 28 — #6

�

�

�

�

�

�

28 STANDARD LATEX INTERFACES

2.1.3 The \includegraphics syntax in the graphicx package
The extended graphics package graphicx also implements \includegraphics but offers
a syntax for including external graphics files that is somewhat more transparent and user-
friendly. With today’s TEX implementations, the resultant processing overhead is negligible,
so we suggest using this interface.

\includegraphics*[key/val-list]{file}

The starred form of this command exists only for compatibility with the standard version of
\includegraphics , as described in Section 2.1.2. It is equivalent to specifying the clip
key.

The key/val-list is a comma-separated list of key=value pairs for keys that take a value.
For Boolean keys, specifying just the key is equivalent to key=true; not specifying the key
is equivalent to key=false. Possible keys are listed below:

bb The bounding box of the graphics image. Its value field must contain four dimen-
sions, separated by spaces. This specification will overwrite the bounding box in-
formation that might be present in the external file.1

hiresbb Makes LATEX search for %%HiResBoundingBox comments, which specify the
bounding box information with decimal precision, as used by some applications.
In contrast, the normal %%BoundingBox comment can take only integer values.
It is a Boolean value, either “true” or “false”.

viewport Defines the area of the graphic for which LATEX reserves space. Material outside
this will still be print unless trim is used. The key takes four dimension argu-
ments (like bb), but the origin is with respect to the bounding box specified in
the file or with the bb keyword. For example, to describe a 20 bp square 10 bp to
the right and 15 bp above the lower-left corner of the picture you would specify
viewport=10 15 30 35.

trim Same functionality as the viewport key, but this time the four dimensions cor-
respond to the amount of space to be trimmed (cut off) at the left-hand side, bot-
tom, right-hand side, and top of the included graphics.

natheight,natwidth The natural height and width of the figure, respectively.2

angle The rotation angle (in degrees, counterclockwise).

origin The origin for the rotation, similar to the originparameter of the \rotatebox
command described on page 40.

width The required width (the width of the image is scaled to that value).

1There also exists an obsolete form kept for backward compatibility only: [bbllx=a, bblly=b,
bburx=c, bbury=d] is equivalent to [bb = a b c d], so the latter form should be used.

2These arguments can be used for setting the lower-left coordinate to (0 0) and the upper-right coordinate
to (natwidth natheight) and are thus equivalent to bb=0 0 w h, where w and h are the values specified for
these two parameters.

ch-stdgraph.tex,v: 1.46 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 51 — #1

�

�

�

�

�

�

C H A P T E R 3

�������� and
������	�: TEX’s Mates

3.1 The���� language . 52
3.2 Differences between�������� and������	� 60
3.3 Running the���� programs . 68
3.4 Some basic�������� libraries . 74
3.5 The�����
� package . 80
3.6 TEX interfaces: getting the best of both worlds . 120
3.7 From �������� and to�������� . 137
3.8 The future of�������� . 138

In designing the TEX typesetting system, Donald Knuth soon realized that he would also
have to write his own font design program. He devised������	�, a language for describ-
ing shapes, and a program to interpret that language and turn the shapes into a pattern of
dots for a printing or viewing device. The result of Knuth’s work was TEX,������	�, and
the extensive Computer Modern font family written in������	�.������	� has also
been used to create special-purpose symbol fonts and some other font families.

The development of ������	� as a font description language paralleled to some
extent that of the PostScript language, which also describes character shapes very elegantly.
PostScript’s strategy, however, is to leave the rendering of the shape until the final printing
stage, whereas������	� seeks to precompute the bitmap output and print it on a fairly
dumb printing device.

Font design is a decidedly specialist art, and one that most of us are ill equipped to
tackle. ������	�, however, defines a very powerful language that can cope with most
graphical tasks. A sibling program, ��������, was developed that uses essentially the
same language but generates PostScript instead of bitmaps. Together, the two provide an

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 52 — #2

�

�

�

�

�

�

52 �������� AND������	�: TEX’S MATES

excellent companion facility with which (LA)TEX users can illustrate their documents, partic-
ularly when they want pictures that graphically express some mathematical construct; this is
not surprising, given that Knuth’s aim was to describe font shapes mathematically. Applica-
tions vary from drawing Hilbert or Sierpiński curves (described in Section 4.4.3) to plotting
data in graphs and expressing relationships in graphical form.

In this chapter we consider how to use both ������	� and �������� (hence-
forth we use ���� to mean “both ������	� and ��������”) to draw pictures and
shapes other than characters in fonts.

Our coverage of���� is divided into six parts. We start with a brief look at the����
language basics; our aim is to give readers new to ���� some ideas of its facilities and the
level at which pictures can be designed. We try to explain commands as they are used, but
some examples may contain���� code that is not explicitly described.

We next consider in some detail the extra facilities of the �������� language, in
particular the inclusion of text and color in figures.

The third section examines how the���� programs are run and how resulting figures
can be included in a LATEX document. The following section describes the general-purpose
�������� libraries, covering in particular boxing macros and the�����
� package.

We then look at programs that write ���� commands for you, concentrating on the
mfpic (LA)TEX package. We conclude with an overview of miscellaneous tools and utilities
related to��������.

For some applications, such as drawing of graphs, diagrams, geometrical figures, and
3-D objects, higher-level macro packages have been developed, which define their own lan-
guages for the user. These packages are described in Chapter 4.

3.1 The���� language
The full intricacies of ������	� are described in loving detail in [72]; the manual for
�������� [47] not only describes the differences between the two systems, but is itself
a good introduction to ����. Alan Hoenig’s book TEX Unbound [49] provides a wealth of
material on ������	� techniques. Articles over many years in the journal TUGboat are
also vital reading for those who want to delve deeply into������	� and��������.

The job of the ���� language is to describe shapes; these shapes can then be filled,
scaled, rotated, reflected, skewed, and shifted, among other complex transformations. In-
deed, ���� programs can be regarded as specialized equation-solving systems that have
the side effect of producing pictures.

���� offers all the facilities of a conventional programming language. Program flow
control, for example, is provided by a for . . .endfor construct, with the usual condition-
als. You can write parameterized macros or subroutines, and there are facilities for local
variables and grouping to limit the scope of value changes. Some of these features are de-
scribed with more detail in the �������� section, although they are also available in
������	�.

Because a lot of the work in writing ���� programs deals with describing geomet-
rical shapes, the numeric support is extensive. For instance, Pythagorean addition (++)
and subtraction (+-+) are directly supported. Useful numeric functions include length x

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 53 — #3

�

�

�

�

�

�

3.1 The
�� language 53

(absolute value of x), sqrt x (square root of x), sind x (sine of x degrees), cosd x
(cosine of x degrees), angle (x, y) (arctangent of y/x), floor x (largest integer ≤
x), uniformdeviate x (uniformly distributed random number between 0 and x), and
normaldeviate (normally distributed random number with mean 0 and standard devia-
tion 1).

A variety of complex data types are defined, including boolean, numeric, pair,
path, pen, picture, string, and transform. Here we can look at some of these in more
detail:

pair “Points” in two-dimensional space are represented in����with the typepair. Con-
stants of type pair have the form (x, y), where x and y are both numeric constants.
A variable p of type pair is equal to the pair expression (xpart p, ypart p).

path A path is a continuous curve, which is composed of a chain of segments. Each seg-
ment has a shape determined by four control points. Two of the control points, the key
points, are the segment’s end points; very often we let ���� determine the other two
control points.

pen Pens, a distinctive feature of ����, are filled convex shapes that are moved along
paths and affect the way lines are drawn in the result. Two pens are initially present
in ����: nullpen and pencircle. nullpen is the single point (0, 0); it contains
no pixels and can be used to fill a region without changing its boundary. By contrast,
pencircle is circular, with the points (±0.5, 0) and (0, ±0.5) on its circumference.
Other pens are constructed as convex polygons viamakepenc, where c is a closedpath;
the key points of c become the vertices of the pen. Pens themselves can be transformed.

picture A picture is a data type that can be used to store a sequence of ���� drawing
commands; the result of a complete ���� program is often built up from the interac-
tion of a set of pictures. The meaning of v+w in������	�, for example, is a picture
in which each pixel is the sum of the two pixels occupying the same position in pictures
v and w, respectively.

transform Affine transforms are the natural transformations of Euclidean geometry—
that is, the linear transformations augmented by translation.���� can construct any
affine transform and provides seven primitive ones [72, p. 141]: shifted, scaled, xscaled,
yscaled, slanted, rotated, and zscaled. The effect of most of the operations is self-evident;
the last one, zscaled, uses a pair of numbers, interpreted as a complex number in Carte-
sian coordinates (i.e., complex multiplication).

Finally, ���� is famous for its ability to solve linear equations, including equations
that involve points. In particular, you can define a point in terms of other points. For exam-
ple, z3=1/2[z1,z2]defines z3 as the point in the middle of the line from z1 to z2.

3.1.1 First examples of���� programs
Let us first look at some examples of���� code, all drawn using��������. You should
have little difficulty making these examples run under ������	� as well, except that

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 54 — #4

�

�

�

�

�

�

54 �������� AND������	�: TEX’S MATES

you may encounter problems with high-resolution output devices, as������	� can run
out of memory when composing large pictures—remember that ������	� generates a
bitmap output. This book was typeset at 2400 dpi, and some ������	� examples were
impossible to run at this resolution. Your only recourse is to work at a lower resolution (e.g.,
300 dpi) or to break your picture into separate “characters” in a font and join them together
in LATEX. It is almost certainly easier to use��������, as it generates PostScript that can
be rendered directly by many printers or turned into PDF.

We do not show the “wrapper” code that is always necessary to turn these examples into
a self-contained document. See the notes in Section 3.3.1 on page 68 for information on how
������	� creates a character and Section 3.3.2 on page 71 for more on how��������
creates a figure.

The simplest statement in ���� is draw, which takes a sequence of points separated
by .. and connects them with curves:

draw (0,0)..(50,20)..(40,30)..(30,20);
Example

3-1-1

The default unit here is a PostScript point (1/72 inch, TEX’s “big point”). To close a object
smoothly between its last and first points, the sequence can be terminated by cycle:

draw (0, 50)..(0,0)..
(60,40)..(60,10)..cycle;

Example

3-1-2

Straight lines are drawn by putting -- instead of .. between the points (the lines are
actually implemented as specially constrained curves):

draw (0,0)--(50,20)--(40,60)--(30,20);
Example

3-1-3

There are several ways of controlling curves: one can vary the angles at the start and
end of the curve with dir, the points that are to be the extremes (the upmost, the leftmost,
and so forth), and the inflection of the curve (with tension and curl). Thus the following

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 55 — #5

�

�

�

�

�

�

3.1 The
�� language 55

code draws a crude coil by judicious use of dir. Instead of the default units, we express all
dimensions in terms of a unit of 2.5 cm, defined at the start:

Example

3-1-4

u=2.5cm;
path p;
p= (0,0) {dir 130}..

{dir -130}(0.25u,0){dir 130}..
{dir -130}(0.5u,0){dir 130}..
{dir -130}(0.75u,0){dir 130}..
{dir -130}(u,0);

draw p rotated -90;

The next example shows the effect of curl. Here a straight line is drawn between three
points and then a curve is drawn between the same points, with curl values:

Example

3-1-5

path p,q;
u=.5cm;
q=(0u,0u)--(6u,0u)--(4u,3u);
draw q;
p=(0u,0u){curl 4000}..(6u,0u)

..{curl 4000}(4u,3u);
draw p;

To demonstrate����’s unusual “pens”, we approximate a spiral drawn with a strange
“nib”. A colored version of this drawing appears in Color Plate I(a).

Example

3-1-6

pickup pencircle scaled 3pt
yscaled .2pt rotated 60;

n:=5;
for i := (n*20) step -(n) until (n):
draw ((i,0)..(0,i)..(-i,0)

..(0,-(i-n))..(i-n,0)) scaled 0.7;
endfor

A very characteristic technique with ���� is creating a path and then using it several
times with different transformations. The following code is an extract from a drawing of a

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:36 — page 56 — #6

�

�

�

�

�

�

56 �������� AND������	�: TEX’S MATES

kite’s tail. Note that shapes can be made solid by using fill instead of draw:

u=1cm;
path p[];
p1:=(.5u,.5u)--(1.5u,.5u)--(.5u,1.5u)
--(1.5u,1.5u)--(.5u,.5u)--cycle;
fill (p1 shifted (0,2.5u))
rotatedaround ((u,3.5u),90);
draw p1 shifted (u,4u);
fill p1 shifted (3.5u,3u);
p2 =(2u,2u)..(u,3.5u)..(2u,5u)
..(4.5u,4u)..(7u,5u);
pickup pencircle scaled 4pt;
draw p2;

Example

3-1-7

A more complicated picture, courtesy of Alan Hoenig from his book TEX Unbound [49],
demonstrates looping commands. Boxes of gradually decreasing size are drawn alternately
white and black, with each one being rotated slightly with respect to the previous box.

boolean timetofillbox; timetofillbox := true;
partway := 0.9; l := .45in; u := 1.05in;
n := 4; theta := 360/n; z1 = (0,u);
for i := 2 upto n:
z[i] = z1 rotated ((i-1)*theta);

endfor
forever:
path p; p := z1
for j := 2 upto n: --z[j] endfor --cycle;
if timetofillbox:

fill p; timetofillbox := false;
else:

unfill p; timetofillbox := true;
fi
pair Z[];
for j := 1 upto n:

Z[j] := partway[z[j-1],z[j]];
endfor
Z1 := partway[z[n],z1];
for j := 1 upto n:

x[j] := xpart Z[j]; y[j] := ypart Z[j];
endfor
if not timetofillbox: l := abs(z1); fi
exitif l < .05u;

endfor
Example

3-1-8

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 141 — #2

�

�

�

�

�

�

C H A P T E R 4

�������� Applications

4.1 A drawing toolkit . 141
4.2 Representing data with graphs . 157
4.3 Diagrams . 176
4.4 Geometry . 189
4.5 Science and engineering applications. 196
4.6 3-D extensions . 207

Chapter 3 gave a general overview of�������� and������	�, as well as an extensive
description of two multipurpose structuring packages, boxes and�����
�. However, as
is the case for LATEX, solutions to many problems can often be found by using existing high-
level packages. Sometimes several different ������	� packages are aimed at the same
tasks, and these packages come with both advantages and drawbacks.

Unfortunately, the perfect package is seldom at hand. It is therefore useful to have a
general idea of what can be achieved in ������	�, and to have some kind of toolbox
for problem solving. Understanding a number of basic tricks will enable the beginner to
supplement existing packages and achieve the desired results.

In this chapter, we start with a review of a number of basic problems and show how
these problems can be solved. Then we describe some standard applications of ����-
��	�, ranging from geometry to physics.

4.1 A drawing toolkit
This section is devoted to a number of advanced features, which are located somewhere be-
tween low-level ������	� code and full application packages. We like to consider all
these features as a kind of toolkit, which can be used with benefit in wider applications.

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 149 — #10

�

�

�

�

�

�

4.1 A drawing toolkit 149

Bogusław Jackowski’s hatching package provides a more elaborate way to achieve hatch-
ing patterns, by redefining the withcolor primitive in such a way that it represents hatch-
ing parameters when the blue component of the color is negative. The following examples
illustrate this principle.

Example

4-1-10

input hatching;

path p;
p:=unitsquare xscaled 30mm yscaled 15mm;
hatchfill p withcolor red

withcolor (45,2mm,-.5bp)
withcolor (-45,2mm,-.5bp);

The next three examples use a special closed path shaped as a star, defined by the star
macro:

Example

4-1-11

input hatching;
vardef star(expr n) =
for i_:=0 upto 2n-1:
if odd i_: 1/2 fi (right rotated (180*(i_/n))) --
endfor cycle
enddef;

interim hatch_match:=0;
path p;
p:=star(10) xscaled 30mm

yscaled 20mm
rotated 20;

hatchfill p withcolor (0,1,.5);
draw image(hatchfill p

withcolor (45,3bp,-.5bp)
withcolor (-45,3bp,-.5bp);

) withcolor red dashed evenly;

Example

4-1-12

input hatching;
% star macro defined as above

path p;
p:=star(10) xscaled 30mm

yscaled 20mm
rotated 20;

interim hatch_match:=0;
hatchoptions(withcolor blue

dashed evenly scaled 2);
hatchfill p withcolor .75white

withcolor (20,6bp,-.5bp);
hatchoptions(withcolor (blue+green)

dashed evenly
shifted (3/2bp,0));

hatchfill p withcolor (110,6bp,-.5bp);

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 174 — #35

�

�

�

�

�

�

174 �������� APPLICATIONS

A more elaborate example appears below. The 8% corresponds to 10 being 8% of 50 +
30 + 10 + 20 + 20.

Lions

Tigers

Hyaena

Monkeys

10
20

38 %

23 %

a segment with 8 %

a green label

input piechartmp

SetupColors((.7,.7),this,this);
SetupPercent(this, " %");
Segment(50,"Lions"); Segment(30,"Tigers");
Segment(10,"Hyaena"); Segment(20,"Monkeys");
Segment(20,"Warthogs");
SegmentState(4,this,0.3);
SegmentState(5,invisible,this);
PieChart(2cm,0.15,60,0,0);
Label.auto(0)(name)(outwards,0);
Label(3,4,5)(value)(inwards,0) withcolor white;
Label(1,2)(percent)(inwards,0) withcolor (1,1,0);
Label.lrt(3)("a segment with ",percent)

((0.9,0.8),(0,-2cm)) withcolor .8red;
pickup pencircle scaled 2pt;
Label.auto(2)("a green label")

((0.9,0.1),(-1cm,7mm)) withcolor .8green;
Example

4-2-26

This example has labels with spaces and needs a font with spaces—hence the
defaultfontdeclaration. This is not a problem when we are using TEX labels.

SetupNumbers(precision,delimiter)

In addition to the SetupPercent commands, several other setup commands are available.
Setup commands The first, SetupNumbers, sets the accuracy and delimiter used. SetupNumbers(2,",")

will, for instance, round at two places and use a comma delimiter.

SetupColors(auto-SV ,shading-SV ,grayscale)

This command specifies the colors used for segments. The three arguments are as follows:

auto-SV is a pair (S, V), where S is the saturation and V is the value in the HSV model.
The hue H is taken from the position of the segment.

shading-SV is a pair giving the maximum values of (S, V) for shaded areas in segments.
The default is (0.4,0.3).

grayscale is a Boolean that, when set to true, switches the colors to grayscale.

SetupText(Mode,TeXFormat,TeXSettings)

This command sets up how text is handled, using three arguments:

Mode is an integer specifying the way labels are typeset: 0 is for string-based typesetting
(default); 1 is for external TEX-based typesetting using TeXFormat and TeXSettings; 2 is

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 202 — #63

�

�

�

�

�

�

202 �������� APPLICATIONS

ctext.rt(R.C.l+(1cm,0),R.C.r+(1cm,0),"E_2",witharrow);

B

E

C

RC

VCC

RB

VBB

Ca

IE

IC

IB

E1

E2

Example

4-5-7

v

D1

D2D3

D4

ZL

input makecirc;
initlatex("\usepackage{amsmath,amssymb}");

source.a(origin,AC,90,"v","");
junction.a(S.a.p+(3cm,1cm),"")(top);
diode.a(J.a,normal,-45,pinA,"D_1","");
diode.b(D.a.K,normal,-135,pinK,"D_2","");
diode.c(D.b.A,normal,135,pinK,"D_3","");
diode.d(D.c.A,normal,45,pinA,"D_4","");
junction.b(D.b.A,"")(bot);
centerto.A(S.a.n,S.a.p)(5cm,imp);
impedance.a(A,90,"Z_L","");
wireU(S.a.p,D.a.A,1.5cm,udsq);
wireU(S.a.n,D.b.A,-1.5cm,udsq);
wire(D.a.K,Z.a.r,rlsq);
wire(Z.a.l,Z.a.l+(0,-4mm),nsq);
wireU(Z.a.l+(0,-4mm),D.d.A,-4cm,rlsq);

Example

4-5-8

input makecirc;
initlatex("\usepackage{amsmath,amssymb}");

transformer.a(origin,mid,0);
diode.a(tf.a.ss+(5mm,1cm),normal,0,pinA,"D_1","");
diode.b(tf.a.si+(5mm,-1cm),normal,0,pinA,"D_2","");
impedance.a(D.a.K+(2cm,-4mm),-90,"Z_L","300\ohm");
wire(tf.a.ss,D.a.A,udsq);wire(tf.a.si,D.b.A,udsq);
wire(D.a.K,Z.a.l,rlsq);wire(Z.a.r,tf.a.m,udsq);
wire(D.b.K,D.a.K+(5mm,0),rlsq);
junction.a(D.a.K+(5mm,0),"")(top);
centerto.A(tf.a.pi,tf.a.ps)(-15mm,sac);
source.a(A,AC,90,"220 V","v");
wire(S.a.p,tf.a.ps,udsq);wire(S.a.n,tf.a.pi,udsq);
centreof.A((xpart S.a.p,ypart tf.a.ps),tf.a.ps,cur);
current.a(c.A,phi.A,"i(t)","5 A");
imesh(tf.a.ss+(1cm,0),15mm,1cm,cw,0,"I_{cc}");

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 210 — #71

�

�

�

�

�

�

210 �������� APPLICATIONS

hexagonal meshes Given a function z = f(x, y), a hexagonal mesh can be obtained with
the hexagonaltrimeshmacro.

input featpost3Dplus2D

def zsurface(expr xc, yc) =
cosd(xc*57)*cosd(yc*57)
+4*mexp(-(xc**2+yc**2)*6.4)

enddef;

f := 7*(4,1,5);
Spread := 35;
LightSource := 10*(4,-3,4);
SubColor := 0.4background;

numeric np, ssize;
path chair;
np = 20;
ssize = 5;

hexagonaltrimesh(true,np,ssize,zsurface);
Example

4-6-2

cubes The kindofcubemacro produces a cube in an orientation depending on its param-
eters. In this example, each cube erases what has been drawn under it, so that it gives
the illusion of the removal of hidden parts.

input featpost3Dplus2D

Spread := 30;
f := 5.4*(1.5,0.5,1);
numeric gridstep, sidenumber,

i, j, coord, aa, ab, ac;
color pa;
gridstep = 0.7;
sidenumber = 4;
coord = 0.5*sidenumber*gridstep;
for i=0 upto sidenumber:
for j=0 upto sidenumber:

pa := (-coord+j*gridstep,-coord+i*gridstep,0);
aa := uniformdeviate(360);
ab := uniformdeviate(180);
ac := uniformdeviate(90);
kindofcube(false, false,

pa, aa, ab, ac, 0.4, 0.4, 0.9);
endfor;

endfor;
Example

4-6-3

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 211 — #72

�

�

�

�

�

�

4.6 3-D extensions 211

labels in space The next example shows how labels can be drawn in space using the
labelinspacemacro.

Example

4-6-4

Labe
l

input featpost3Dplus2D
verbatimtex
%&latex
\documentclass{article}
\begin{document}
etex

f := 1.1*(2,1,0.5);
ParallelProj := true;
kindofcube(false,true,(0,-0.5,0),

90,0,0,1.2,0.1,0.4);
kindofcube(false,true,(0,0,0),

0,0,0,0.5,0.1,0.8);
labelinspace(false,(0.45,0.1,0.65),

(-0.4,0,0),(0,0,0.1),
btex \framebox{\textsc{Label}} etex);

projected segments The last example shows how points can be defined in space, and
pathofstraightlineused to draw a segment joining the projections of these points.

Example

4-6-5

input featpost3Dplus2D

SphericalDistortion := true;
Spread := 50;
f := 0.4*(1.5,0.5,1);
numeric gridstep, sidenumber, i, coord;
color pa, pb, pc, pd;
gridstep = 0.1;
sidenumber = 5;
coord = 0.5*sidenumber*gridstep;
for i=0 upto sidenumber:
pa := (-coord,-coord+i*gridstep,0);
pb := (coord,-coord+i*gridstep,0);
pc := (-coord+i*gridstep,-coord,0);
pd := (-coord+i*gridstep,coord,0);
draw pathofstraightline(pa, pb);
draw pathofstraightline(pc, pd);

endfor;

3DLDF

Laurence D. Finston’s ambitious extension to ������	�, 3DLDF (http://www.gnu.
org/software/3dldf/LDF.html) is written in C++ using CWEB. 3DLDF (the author’s
initials) takes an input similar to ������	� and outputs pure ������	� code. The
package currently computes the intersections of various projected curves, and the author
plans to implement the removal of hidden parts.

tlgc2.sty,v: 1.43 2007/06/02

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 213 — #1

�

�

�

�

�

�

C H A P T E R 5

Harnessing PostScript
Inside LATEX: PSTricks

5.1 The components of PSTricks . 214
5.2 Setting keywords, lengths, and coordinates . 217
5.3 The pspicture environment . 220
5.4 The coordinate system . 223
5.5 Grids . 224
5.6 Lines and polygons . 231
5.7 Circles, ellipses, and curves . 240
5.8 Dots and symbols . 249
5.9 Filling areas . 253
5.10 Arrows . 259
5.11 Labels. 265
5.12 Boxes . 269
5.13 User styles and objects . 279
5.14 Coordinates . 296
5.15 The PSTricks core . 302

As we saw in Chapter 1, one way of drawing graphics with LATEX is to embed low-level picture
drawing primitives for the target device into LATEX macros, so that full typesetting informa-
tion is available and we can work in a familiar macro programming environment. When
the target device is something as rich as the full PostScript language, this can result in a
very powerful system. While many macro packages have implemented access to some parts
of PostScript for this purpose, the most complete is undoubtedly PSTricks. In the next two
chapters, we survey its capabilities and demonstrate some of the power that results from
combining LATEX and PostScript.

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 214 — #2

�

�

�

�

�

�

214 HARNESSING POSTSCRIPT INSIDE LATEX: PSTRICKS

We do not attempt to describe absolutely every PSTricks-related macro, nor do we give
examples of all the possible combinations and tricks, as this would require a large book of its
own, e.g., [135]. We have, however, tried to describe and give examples of all the important
features of the basic packages. You’ll find a lot of useful information on the official PSTricks
Web site at http://PSTricks.tug.org/.

Because there are a great many commands and especially keywords in PSTricks, we pro-
vide a summary description at the end of the next chapter (Section 6.8 on page 459). PSTricks
and its related packages are extremely powerful, and their facilities may take some time to
understand. It is also documented in the individual packages and [127, 135], and its imple-
mentation is described in [126].

5.1 The components of PSTricks
The PSTricks project was started by Timothy Van Zandt a long time ago and is one of the
oldest TEX packages still in use.

I started in 1991. Initially I was just trying to develop tools for my own use. Then I thought
it would be nice to package them so that others could use them. It soon became tempting
to add lots of features, not just the ones I needed. When this became so interesting that it
interfered with my “day job”, I gave up the project “cold turkey”, in 1994.

[Timothy Van Zandt]

After Timothy Van Zandt stopped working on the project, Denis Girou took over the
task to care for PSTricks, mainly fixing bugs and writing some more new packages; nowa-
days this job is done by Herbert Voß. Several developers are working on existing and new
packages, which is the reason why the number of these additional packages, which depend
on the basic PSTricks, is still increasing. A selection of them is discussed in Chapter 6, and
the full list is available at the official Web site at http://PSTricks.tug.org.

5.1.1 The kernel
The basic PSTricks package file is pstricks.tex, which provides the basic unit handling,
and basic graphic macros like dots, lines, frames, and so on. For some historical reason
the packages pstricks, pst-plot, pst-node, and pst-tree build the core of PSTricks and are
all available on CTAN in the directory CTAN:/graphics/pstricks/base/generic/.
Each PSTricks package has a corresponding LATEX style file, and the basic ones are stored in
CTAN:/graphics/pstricks/base/latex/. In general, the style files do nothing other
than load the TEX file via the \inputmacro.

The basic PSTricks packages consist of a core of picture-drawing primitives imple-
mented by \special commands that pass PostScript code to a driver, mainly dvips. The
packages also contain a set of higher-level macros for particular applications, like pst-plot
or pst-node. With it you can

• Draw lines, polygons, circles, and curves.

• Place and manipulate TEX text.

ch-pstricks.tex,v: 1.73 2007/06/01

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 225 — #13

�

�

�

�

�

�

5.5 Grids 225

\psgrid[settings] (x0,y0) (x1,y1) (x2,y2)

The \psgridmacro is a very powerful tool for drawing coordinate grids. The syntax is easy
to use, but is valid only for Cartesian coordinate systems.

When no coordinates have been specified, \psgrid takes the ones defined by the en-
closing pspicture environment or, if not inside such an environment, a 10 × 10 rectangle
in the current units is assumed. If only one coordinate pair is given, it is taken to denote one
corner and (0,0) is established as the opposite corner. When using two coordinate pairs,
any two opposite corners of the grid should be specified. With three coordinate pairs given,
the first pair determines the intersection point of the lines to be labeled and the other two
pairs are interpreted as in the previous case.

In short: (x0,y0) defaults to (x1,y1); the default for the latter is (0,0), and (outside
of a pspicture environment) the default for (x2,y2) is (10,10).

The labels are positioned along the two lines that intersect at (x0,y0), on the side of the
line pointing away from (x2,y2), and shifted slightly horizontally or vertically towards the
latter coordinate so they won’t interfere with other lines. In the next example, \psgrid has
no arguments, so it takes all coordinates from the surrounding pspicture environment.
The keywords used in this and the following examples are discussed in detail in Section 5.5.1
on the following page.

Example

5-5-1 -1 0 1 2
-1

0

1

2

\usepackage{pstricks}

\psset{griddots=0,gridlabels=7pt,subgriddiv=2}
\begin{pspicture}(-1,-1)(2,2)
\psgrid

\end{pspicture}

With only one pair of coordinates, \psgrid assumes that (0,0) is the opposite corner.
Exchanging the order of the coordinate pairs, as in the second figure, changes the position
of the labels from the left and bottom sides to the right and top sides of the rectangle, respec-
tively. (See also the last example below with three pairs of coordinates.)

Example

5-5-2 0 1
0

1

2 10
2

1

0

\usepackage{pstricks}

\begin{pspicture}(-1,-1)(2,2)
\psgrid[griddots=0,gridlabels=7pt,subgriddiv=2](1,2)

\end{pspicture}
\begin{pspicture}(-1,-1)(2,2)
\psgrid[griddots=0,gridlabels=7pt,

subgriddiv=2](1,2)(0,0)
\end{pspicture}

ch-pstricks2.tex,v: 1.48 2007/04/21

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 288 — #76

�

�

�

�

�

�

288 HARNESSING POSTSCRIPT INSIDE LATEX: PSTRICKS

This is also demonstrated in the next example.

0 1 2 3
0

1

2

3

4

\usepackage{pstricks,pst-plot}

\begin{pspicture}[showgrid=true](3,4)
\pscustom[linewidth=1.5pt]{%
\translate(0,1)
\psplot{0}{3}{x 180.0 mul 1.5 div sin}
\translate(2,0)
\swapaxes
\psplot[liftpen=2]{0}{3}{x 180.0 mul 1.5 div sin}}

\end{pspicture}
Example

5-13-18

\msave \mrestore

With this pair of macros, the currently valid coordinate system may be saved and restored,
respectively. In contrast to what happens with \gsave and \grestore pairs, all other val-
ues such as line type, thickness, etc., will remain unaffected. The \msave and \mrestore
commands must be used in pairs! They can be nested arbitrarily both with themselves and
with \gsave and \grestore. Care must be taken to ensure that this nesting is pairwise
balanced.

The next example plots the first sine function with the origin of ordinates set by
\translate(0,1.5). Thereafter, the state of the coordinate system is saved, a new ori-
gin is set with \translate(1,2)1, and another sine function is plotted. Following that,
the old state is restored with \mrestore and the origin of ordinates is back at (0,1.5)
again. The later cosine function is plotted with this origin.

0 1 2 3
0

1

2

3

4 \usepackage{pstricks,pst-plot}

\begin{pspicture}[showgrid=true](3,4)
\pscustom[linewidth=1.5pt]{%
\translate(0,1.5)
\psplot{0}{3}{x 180.0 mul 1.5 div sin}
\msave

\translate(1,2)
\scale{1 0.5}
\psplot[liftpen=2]{-1}{2}{x 180.0 mul 1.5 div sin}

\mrestore
\psplot[liftpen=2]{0}{3}{x 180.0 mul 0.5 div cos}}

\end{pspicture}
Example

5-13-19

1Referring to the current origin (0,1.5) a \translate(1,2) corresponds to the absolute coordinates
(1,3.5).

ch-pstricks10.tex,v: 1.59 2007/06/06

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 289 — #77

�

�

�

�

�

�

5.13 User styles and objects 289

\openshadow[settings]

The \openshadow command creates a copy of the current path, using the specified shadow
key values (see page 239). Whether the shadow path thus obtained is stroked or filled de-
pends on the parameter settings supplied with \openshadow itself and/or \pscustom, as
can be seen in the example.

Example

5-13-20 0 1 2 3
0

1

2

3

4

\usepackage{pstricks,pst-plot}

\begin{pspicture}[showgrid=true](3,4)
\pscustom[linewidth=2pt]{%
\translate(0,3)
\psplot{0}{3}{x 180.0 mul 1.5 div sin}
\openshadow[shadowsize=10pt,shadowangle=-30,

shadowcolor=blue]}
\pscustom[linewidth=2pt,fillcolor=red,

fillstyle=solid]{%
\translate(0,1.5)
\psplot{0}{3}{x 180.0 mul 1.5 div sin}
\openshadow[shadowsize=10pt,shadowangle=-30,

shadowcolor=blue]}
\end{pspicture}

\closedshadow[settings]

The \closedshadowcommand always creates a filled shadow of the region enclosed by the
current path, as if it were a non-transparent environment.

Example

5-13-21 0 1 2 3
0

1

2

3

4

\usepackage{pstricks,pst-plot}

\begin{pspicture}[showgrid=true](3,4)
\pscustom[linewidth=2pt]{%
\translate(0,3)
\psplot{0}{3}{x 180.0 mul 1.5 div sin}
\closedshadow[shadowsize=10pt,shadowangle=-30,

shadowcolor=blue]}
\pscustom[linewidth=2pt,fillcolor=red,

fillstyle=none]{% <-- no effect!
\translate(0,1.5)
\psplot{0}{3}{x 180.0 mul 1.5 div sin}
\closedshadow[shadowsize=10pt,shadowangle=-30,

shadowcolor=blue]}
\end{pspicture}

The method used for producing the shadow should be noted. PSTricks simply cre-
ates a copy of the closed path, translates it according to the demands of shadowsize
and shadowangle, fills it with shadowcolor, and then refills the original path with
fillcolor, which is white by default. The \openshadowmacro doesn’t fill the original

ch-pstricks10.tex,v: 1.59 2007/06/06

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 290 — #78

�

�

�

�

�

�

290 HARNESSING POSTSCRIPT INSIDE LATEX: PSTRICKS

path with the current fillcolor, so that the underlying shadow copy is visible (and in
this example, not filled). The \closedshadowfills the original path, so that the underlying
copy looks like a real shadow.

\usepackage{pstricks}

\begin{pspicture}(0,-0.25)(5,2)
\pscustom[fillstyle=none,shadowcolor=lightgray,fillcolor=blue]{%

\psbezier(0,0)(1,1)(1,-1)(2,0) \psbezier(2,0)(3,1)(1,1)(2,2)
\closepath
\openshadow[shadowsize=10pt,fillcolor=white,shadowangle=30]}

\rput(2.5,0){%
\pscustom[fillstyle=none,shadowcolor=lightgray,fillcolor=blue]{%

\psbezier(0,0)(1,1)(1,-1)(2,0) \psbezier(2,0)(3,1)(1,1)(2,2)
\closepath
\closedshadow[shadowsize=10pt,fillcolor=white,shadowangle=30]}}

\end{pspicture}

Example

5-13-22

This strategy is to be kept in mind when specifying, with the keyword \pscustom , a
fillcolor that differs from white: in such cases the macro \closedshadow has to be
given the correct fill color.

\movepath(dx,dy)

The \movepath command shifts the current path by (dx, dy). If the original path is needed
later on, the \movepath operation has to be encapsulated within a \gsave/\grestore
pair.

0 1 2 3 4
0

1

2

3

\usepackage{pstricks,pst-plot}

\begin{pspicture}[showgrid=true](4,3)
\pscustom[fillcolor=lightgray,fillstyle=solid]{%

\translate(0,1.5)
\psplot{0}{3}{x 180.0 mul 1.5 div sin}
\movepath(1,0.5)}

\psline[linestyle=dashed]{*->}(0,1.5)(1,2)
\end{pspicture}

Example

5-13-23

ch-pstricks10.tex,v: 1.59 2007/06/06

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 313 — #1

�

�

�

�

�

�

C H A P T E R 6

The Main PSTricks Packages

6.1 pst-plot—Plotting functions and data . 313
6.2 pst-node—Nodes and connections . 334
6.3 pst-tree—Typesetting trees . 366
6.4 pst-fill—Filling and tiling . 383
6.5 pst-3d—Shadows, tilting, and three-dimensional representations 388
6.6 pst-3dplot—3-D parallel projections of functions and data 400
6.7 Short overview of other PSTricks packages. 417
6.8 Summary of PSTricks commands and keywords. 459

The “main” packages of PSTricks nowadays have this name only for historical reasons.
PSTricks is used for those packages listed in the pst-all package. We do not follow this list
here. Instead, we describe the most common ones (e.g., pst-plot, pst-node) in some detail.
Section 6.7 then gives an overview of other packages, showing at least one characteristic
example to help you understand the purpose of each package and approach that it takes.

6.1 pst-plot—Plotting functions and data
The base package pstricks provides some macros to plot function values and coordinates,
as listed in Table 6.1. All of these macros accept an arbitrary number of coordinate pairs as
arguments.

The pst-plot package provides improved commands for plotting external data and
functions as well as coordinate axes [59, 60, 131]. It supports only two-dimensional data
pairs. For plotting (x, y, z) data triplets or three-dimensional functions, you can use the
pst-3dplot package discussed in Section 6.6, which supports a parallel projection of 3-D ob-
jects [132, 134].

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 326 — #14

�

�

�

�

�

�

326 THE MAIN PSTRICKS PACKAGES

In contrast to the preceding plot commands, the argument of \listplot is first ex-
\listplot panded if it contains TEX macros; otherwise, it is passed to PostScript without change. In

the process, TEX macros are replaced with their corresponding replacement text. It is pos-
sible to include entire PostScript programs in the argument to \listplot , as shown in
Example 6-1-33.

The first example illustrates the Hénon attractor.

1−1−2

1 �

�

�
�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

� �
�

�

�

�

� �

�

�

�

��

\usepackage{pstricks,pst-plot}
% definition of \henon with data points like this:
% \newcommand\henon{ 1.00000000 1.00000000
% 0.56000000 0.31000000
% ... many more ...}

\psset{xunit=1.5cm, yunit=2.5cm}
\begin{pspicture}(-2,-0.5)(1.5,1.25)
\psaxes{->}(0,0)(-2,-0.5)(1.5,1.25)
\listplot[showpoints=true,plotstyle=curve,

linecolor=blue]{\henon}
\end{pspicture}

Example

6-1-32

The second example includes the watermark “DRAFT”, which was added to the original
data with additional PostScript code.

1−1−2

1

DRAFT
�

�

�
�

�

�

�

�

�

�

�

�

�

�

� �
�

�

�

�

�

� �
�

�

�

�

� �

�

�

�

��

\usepackage{pstricks,pst-plot}
% \henon as in previous example
\newcommand{\dataA}{\henon
gsave
/Helvetica findfont 40 scalefont setfont
45 rotate
0.9 setgray
-60 10 moveto (DRAFT) show
grestore }

\psset{xunit=1.5cm, yunit=2.5cm}
\begin{pspicture}(-2,-0.5)(1.5,1.25)
\psaxes{->}(0,0)(-2,-0.5)(1.5,1.25)
\listplot[showpoints=true,linecolor=blue,

plotstyle=curve]{\dataA}
\end{pspicture}

Example

6-1-33

Instead of modifying the data set passed to \listplot, you can redefine the
\ScalePointsmacro in pst-plot. For example, if you wanted to exchange the x and y val-

ch-pst-packages1.tex,v: 1.59 2007/06/05

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 357 — #45

�

�

�

�

�

�

6.2 pst-node—Nodes and connections 357

It works only in conjunction with the \nput command (see page 359).

Example

6-2-54

AAAAA

AAAA
AAAAAAAAAAAAAAAAAA A A A AAAA

AA
AA
AA
AA

AAAAAAAAAAAAAA
AAAAA A A A A A A AAA

A
A
A
A
A
A

A

AAAAAAAAAA
A
A
A

\usepackage{pstricks,pst-node,multido}

\begin{pspicture}(4.5,4.5)
\cnode*(2,2){4pt}{A}
\multido{\nA=0+10,\rB=0+0.5}{90}{%

\nput[rot=\nA,%
labelsep=\rB pt]{\nA}{A}{A}}

\end{pspicture}

6.2.5 Putting labels on node connections
In Section 5.11 on page 265, we already discussed several commands that allow arbitrary
placement of marks with respect to labels. In the context of connections, there are some
special commands to consider. After a connection has been drawn, the coordinates of two
points are stored temporarily until a new connection is drawn. This data may prove very
useful for positioning the labels to be attached to such a connection. Of course, it also implies
that label commands should come immediately after connection commands.

In Section 6.2.4 on page 348, which discussed the allowed keywords, you will find many
examples of the placement of labels. In this section we will review the various commands
once again.

\ncput* [settings] {object} \naput* [settings] {object} \nbput* [settings] {object}

The n label commands are always based on the visible length of a connection, without atten-
n labelstion to the actual node centers. By default, the label is placed in the middle of this visible

connection, which can be changed with the appropriate keyword. The letter c indicates con-
nected (on the line), and a and b indicate above and below the line, respectively. The starred
versions produce opaque material, which means you can overwrite lines with a label to gain
increased visibility.

Example

6-2-55 0 1 2 3
0

1

2

3

4

on

above

below

on

above

below

\usepackage{pstricks,pst-node}

\begin{pspicture}[showgrid=true](3,4)
\cnode(0.1,0.1){0.1cm}{A} \cnode(2.9,2.9){0.1cm}{B}
\ncline{<->}{A}{B} \ncput*{on}
\naput[npos=0.75]{above} \nbput[npos=0.25]{below}
\nccurve[angleA=110,angleB=100,
linecolor=blue]{<->}{A}{B}

\ncput{\textcolor{blue}{on}}
\naput[npos=0.75]{\textcolor{blue}{above}}
\nbput[npos=0.25]{\textcolor{blue}{below}}

\end{pspicture}

ch-pst-packages2.tex,v: 1.70 2007/06/05

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 414 — #102

�

�

�

�

�

�

414 THE MAIN PSTRICKS PACKAGES

The keyword pOrigin is the positioning key, which is passed to the command \rput.The pOrigin key

Its effects concern only \pstThreeDPut, and the default value is based on the defaults for
\rput (see Section 5.11.1 on page 266).

x y

z

xy

xz

yz \usepackage{pstricks,pst-3dplot}

\begin{pspicture}(-2,-1)(1,2.5)
\pstThreeDCoor[xMin=-1,xMax=2,yMin=-1,

yMax=2,zMin=-1,zMax=2]
\pstPlanePut[pOrigin=c](0,0,-1){\fbox{\Huge\red xy}}
\pstPlanePut[plane=xz,pOrigin=rb](0,0,0)

{\fbox{\Huge\blue xz}}
\pstPlanePut[plane=yz,pOrigin=lb](0,0,1.5)

{\fbox{\Huge\green yz}}
\end{pspicture}

Example

6-6-28

The keyword hiddenLine enables a very simple “hidden-line algorithm”: the lines
The hiddenLine key are plotted with the command \pscustom and then filled with the predefined fill style

hiddenStyle.

\newpsstyle{hiddenStyle}{fillstyle=solid,fillcolor=white}

You can overwrite this style as required. Just keep in mind that the curves must be built
from the end to the beginning; otherwise, the hidden lines will be visible. For examples, see
Section 6.6.2 on page 406.

The keyword drawStyledefines the manner in which the function is plotted. Possible
The drawStyle key key values are xLines, yLines, xyLines, and yxLines. The values refer to the plotting

sequence; that is, xLines has the lines drawn in the x direction, whereas yxLines means
that they are first drawn in the y direction and then in the x direction.

x y

z

\usepackage{pstricks,pst-3dplot}
% \func as defined in Example 6-6-13

\begin{pspicture}(-6,-3)(6,4)
\psset{Beta=15,unit=0.75}
\psplotThreeD[plotstyle=line,

drawStyle=xLines,
yPlotpoints=50,xPlotpoints=50,
linewidth=0.2pt](-4,4)(-4,4)

{\func}
\pstThreeDCoor[xMax=5,yMax=5,

zMax=3.5]
\end{pspicture}

Example

6-6-29

ch-pst-packages6.tex,v: 1.49 2007/06/06

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 415 — #103

�

�

�

�

�

�

6.6 pst-3dplot—3-D parallel projections of functions and data 415

Example

6-6-30

x y

z

\usepackage{pstricks,pst-3dplot}
% \func as defined in Example 6-6-13

\begin{pspicture}(-6,-3)(6,4)
\psset{Beta=15,unit=0.75}
\psplotThreeD[plotstyle=curve,%

drawStyle=yLines,%
hiddenLine=true,%
yPlotpoints=50,xPlotpoints=50,%
linewidth=0.2pt](-4,4)(-4,4){\func}

\pstThreeDCoor[xMax=5,yMax=5,zMax=3.5]
\end{pspicture}

Example

6-6-31

x y

z

\usepackage{pstricks,pst-3dplot}
% \func as defined in Example 6-6-13

\begin{pspicture}(-6,-3)(6,4)
\psset{Beta=15,unit=0.75}
\psplotThreeD[%
plotstyle=curve,drawStyle=xyLines,%
hiddenLine=true,%
yPlotpoints=50,xPlotpoints=50,%
linewidth=0.2pt](-4,4)(-4,4){\func}

\pstThreeDCoor[xMax=5,yMax=5,zMax=3.5]
\end{pspicture}

The keywords visibleLineStyle and invisibleLineStyle refer to the The visibleLineStyle
and invisibleLineStyle
keys

drawing of bodies: the macro tries to identify hidden lines and draws them with
the line style invisibleLineStyle, while drawing the visible ones with the style
visibleLineStyle.

Example

6-6-32

x

y

z

� \usepackage{pstricks,pst-3dplot}

\begin{pspicture}(-1,-1)(3,3.25)
\psset{Alpha=30}
\pstThreeDCoor[xMin=-3,xMax=1,yMax=2,zMax=4]
\pstThreeDBox(-1,1,2)(0,0,2)(2,0,0)(0,1,0)
\pstThreeDDot[drawCoor=true,linecolor=blue](-1,1,2)

\end{pspicture}

ch-pst-packages6.tex,v: 1.49 2007/06/06

�

�
“tlgc2” — 2007/6/15 — 15:37 — page 446 — #134

�

�

�

�

�

�

446 THE MAIN PSTRICKS PACKAGES

\CylindreThreeD(0,0,0){10}{15} \CylindreThreeD(0,0,15){20}{5}
\DemiSphereThreeD[RotX=180](0,0,35){20}
\SphereCreuseThreeD[RotX=180](0,0,35){20}
{ \psset{RotY=90,RotX=0,RotZ=30} \CylindreThreeD(15,15,5){5}{20} }
\multido{\iCY=-45+90}{2}{\CylindreThreeD(45,\iCY,0){5}{50}

\DemiSphereThreeD(45,\iCY,50){5}}
\end{pspicture}

Example

6-7-39

The pst-ob3d package

This package allows you to draw basic three-dimensional objects such as cubes (which can
be deformed to rectangular parallelepipeds) and dies. The package author is Denis Girou.

\usepackage{pst-ob3d}

\ThreeDput{\psframe[fillstyle=solid,fillcolor=black!15](6,6)
\psgrid[subgriddiv=0,gridlabels=0,griddots=5](6,6)}

\psset{fillstyle=solid,dotscale=2,RandomFaces=true,Corners=true}
\randomi=123456 \PstDie[fillcolor=black!10](1,3,0)
\randomi=271354 \PstDie[fillcolor=black!20,viewpoint=1 0.3 1,

CornersColor=black!80](0.3,1.5,0)
\psset{linecolor=white}
\randomi=93850516 \PstDie[fillcolor=black!60,viewpoint=1 -0.5 1,

CornersColor=black!20](3,3,0)
\randomi=8873165 \PstDie[fillcolor=black!40,viewpoint=1 -0.2 1,

CornersColor=black!10](2,5,0)

�
� � �
�
��
�

��
�

� � ��
�

�� �
� �

�
�

�
� �
��
��
�

�
��

���

� ��� � � �
�

�
�

� ��� �� � �
��
�
��
�

� � �
�
�� �

� �

��
�

��
�
�
� � �
�

� � �

Example

6-7-40

ch-pst-packages99.tex,v: 1.93 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 467 — #1

�

�

�

�

�

�

C H A P T E R 7

The XY-pic Package

7.1 Introducing XY-pic . 467
7.2 Basic constructs . 469
7.3 Extensions. 474
7.4 Features . 478
7.5 Further examples . 509

XY-pic is a general-purpose drawing package based on TEX. It works smoothly with most
formats, including LATEX, AMS-LATEX, AMS-TEX, and plain TEX. It has been used to type-
set complicated diagrams from numerous application areas, including category theory, au-
tomata, algebra, geometry, neural networks, and knot theory. XY-pic’s generic syntax lets
you use a consistent mnemonic notation system that is based on the logical construction of
diagrams by the combination of various elementary visual components. You can also write
macros by combining these basic elements consistently to form higher-level structures spe-
cific to the intended application.

XY-pic was originally written by Kristoffer Høgsbro Rose [105]. Later Ross Moore
joined the development effort and the ensuing collaboration resulted in extensive revisions
and extensions [104, 106].

7.1 Introducing XY-pic
The XY-pic system is built around an object-oriented drawing language called the kernel:
this is a notation for composing “objects” with “methods” that correspond to the meaningful
drawing operations on the object.

The kernel supports the following basic graphic notions (see Section 7.2):

• Positions can be specified in various formats. In particular, user-defined coordinates
can be absolute or relative to previous positions, objects, object edges, or points on
connections.

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 468 — #2

�

�

�

�

�

�

468 THE XY-pic PACKAGE

• Objects can have several forms—e.g., circular, elliptic, and rectangular—and can be
adjusted in several ways, even depending on the direction of other objects. In particular,
an object can be used to connect two other objects.

Enhancements to the kernel, called “options”, have two main varieties: extensions (see
Section 7.3) add more objects and methods to the repertoire (such as “curving” and “fram-
ing”), while features (see Section 7.4) provide notations for particular application areas (e.g.,

“arrows”, “matrices”, “polygons”, “lattices”, “knots”). In general, extensions provide visual
components, whereas features add domain-specific notations for their logical composition.

This chapter gives examples of XY-pic’s use in various application areas. Through this
“teach by example” approach, it serves as a complement to the XY-pic User’s Guide [106],
which introduces the most used features, and the XY-pic Reference Manual [104], which de-
scribes the syntax of all XY-pic commands and their arguments. A study of our examples
should put you in an excellent position to start drawing your own diagrams; we hope it will
also convince you of the beauty, power, and flexibility of the XY-pic package.

XY-pic consists of various modules. If you are not sure which ones to load, it is probablyA first example of
XY-pic code best to load “a large set”, as follows:1

\usepackage[all]{xy}

Once you know enough about XY-pic to identify which functions you want to use, then you
can specify only the extensions or features that are actually needed. For instance,

\usepackage[curve,arrow,cmactex]{xy}

loads the curve extension and arrow feature, which are tuned to produce \special com-
mands understood by Thomas Kiffe’s CMacTeX Macintosh port of TEX programs.

To get an idea of the philosophy on which XY-pic is based, let us first look at how we
“construct” an XY-picture. To make things relatively easy, we consider a matrix-like diagram.
As explained in more detail in Section 7.4.2, the principal way to create a diagram is with the
command \xymatrix{spec}, where spec is the specification of the matrix entries, which, in
general, are aligned in rows and columns. Just as in a tabular environment, entries inside
a row are separated by ampersands and successive rows are separated by \\.

A
∑m

i=n i2

• D

�����������

\usepackage[all]{xy}

\[
\xymatrix{
A & *+[F]{\sum_{i=n}^m {i^2}} \\

& {\bullet} & D \ar[ul]
}\]

Example

7-1-1

1For formats other than LATEX, use the command\input xy followed by \xyoption{all}. The all option
loads the curve, frame, tips, line, rotate, and color extensions as well as the matrix, arrow, and graph
features. Any other features or extensions needed must be loaded separately.

ch-xypic.tex,v: 1.47 2007/06/03

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 469 — #3

�

�

�

�

�

�

7.2 Basic constructs 469

This example has two rows of three columns and shows a good deal about how XY-pic
interprets commands.

• By default, entries inside XY-pic environments are typeset in mathematics mode, using
“text style”, and are centered.

• In many cases you may not start entries with a bare macro name—such names must be
enclosed in braces or be otherwise “protected”.

• As in a tabular environment, empty entries at the end of rows can be omitted if not
referred to.

• Elements can be addressed by their relative (“logical”) position in the diagram; thus
\ar[ul] draws an arrow from the “current” position to the matrix cell “one up and
one to the left”.

• The format and shape of an element can be customized by specifying an “entry modi-
fier” (e.g., “[F]” tells XY-pic to frame the entry).

If you have questions or need some help, you can address the XY-pic mailing list
xy-pic@tug.org, to which you can subscribe by visiting the Web sitehttp://tug.org/
mailman/listinfo/xy-pic.

7.2 Basic constructs
A thorough knowledge of how XY-pic interprets the various commands will let you exploit
its many functions fully. It will also help you understand the subtleties of the various exten-
sions and features introduced in later sections.

A kernel XY-picture is enclosed in an xy environment:1

\begin{xy}. . .\end{xy}

The location at which an XY-pic object is being “dropped” is called its “position”. In fact, in
most cases only the coordinates or shape of the “current position” is set.

7.2.1 Initial positions
The simplest form of XY-pic position is called absolute, written <X,Y>. The coordinates X
and Y are the offsets right and above the origin of the picture, which thus lies at <0cm,0cm>.
Simple arithmetic operators can be used to position the current point. A comma is used to
separate one position from another:

Example

7-2-1 DL DR

UL UR

5, 5

\usepackage{xy}

\[\begin{xy}
0*{DL} ,+/r1cm/*{DR}

,<0cm,1cm>*{UL} ,<1cm,1cm>*{UR}
,(5,5)*{5,5}
\end{xy}\]

1When using XY-pic with formats other than LATEX, use \xy. . .\endxy.

ch-xypic.tex,v: 1.47 2007/06/03

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 484 — #18

�

�

�

�

�

�

484 THE XY-pic PACKAGE

Squares and triangles can be easily combined to create more complex diagrams. A spe-
cial kind of diagram is the “pullback”, which is created as follows.

Y Z
g

X ×Z Y

Y

g

��

X ×Z Y Xp

 X

Z

f

��

T

X

x

����
���

���
���

���
���

���T

X ×Z Y

(x,y)

��

T

Y

y

��

\usepackage{diagxy}

\[\bfig
\pullback|brra|

[X\times_ZY‘X‘Y‘Z;p‘g‘f‘g]%
/>‘{.>}‘>/[T;x‘(x,y)‘y]

\efig\]
Example

7-4-9

In homology one often encounters 3 × 3 and 3 × 2 diagrams. They are typeset with
the \iiixiii and \iiixii commands, respectively, whose default behavior is displayed
in the following examples. The usual order for the arrow parameters is first all horizontal
arrows and then all vertical ones, left to right, and then top to bottom.

\usepackage{diagxy}

$\bfig \iiixiii[A‘B‘C‘D‘E‘F‘G‘H‘I; 1‘2‘3‘4‘5‘6‘7‘8‘9‘10‘11‘12] \efig$
\quad
$\bfig \iiixii[A‘B‘C‘D‘E‘F; 1‘2‘3‘4‘5‘6‘7] \efig$

G H
5

 H I
6

E F4

D E3

A B
1

 B C

2

 C

F

9

��

B

E

8

��

A

D

7

��
D

G

10

��

E

H

11

��

F

I

12

��

D E
3

 E F
4

A B
1

A

D

5

��

B C
2

B

E

6

��

C

F

7

��

Example

7-4-10

A more interesting example of a 3 × 2 diagram is the following, where we add annota-
tions (text and matrices) to the arrows. The placement of the arrow labels is specified with
the first argument. Recall the order in which the arrow characteristics should be specified
(see Example 7-4-10). We also load the amsmath package since we use the pmatrix envi-
ronment.

\usepackage{diagxy,amsmath}

\[\bfig
\iiixii|aaaalmr|<1000,800>

[X‘Y‘Z‘X\oplus X_0‘Y\oplus X_0\oplus Z_0‘Z\oplus Z_0;
f_1‘f_2‘\begin{pmatrix}f_1&0\\0&1\\0&0\end{pmatrix}‘

\begin{pmatrix}f_2&0&0\\0&0&1\end{pmatrix}‘

ch-xypic.tex,v: 1.47 2007/06/03

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 485 — #19

�

�

�

�

�

�

7.4 Features 485

\begin{pmatrix}1\\0\end{pmatrix}‘
\begin{pmatrix}1\\0\\0\end{pmatrix}‘
\begin{pmatrix}1\\0\end{pmatrix}]

\efig\]

Example

7-4-11 X ⊕ X0 Y ⊕ X0 ⊕ Z0

⎛
⎜⎜⎝

f1 0
0 1
0 0

⎞
⎟⎟⎠

 Y ⊕ X0 ⊕ Z0 Z ⊕ Z0

⎛
⎝f2 0 0

0 0 1

⎞
⎠

X Y
f1

X

X ⊕ X0

⎛
⎝1

0

⎞
⎠

��

Y Z
f2

Y

Y ⊕ X0 ⊕ Z0

⎛
⎜⎜⎝

1
0
0

⎞
⎟⎟⎠

��

Z

Z ⊕ Z0

⎛
⎝1

0

⎞
⎠

��

Finite-state and stack diagrams

Finite-state diagrams can also be typeset in a straightforward way:

Example

7-4-12

in ���������	1

b

�� a
���������	2

a

		 b
���������	3
����

a

��

b
���������	BCDEFGHI4

�
���

�

a

���

����

b

��

\usepackage[matrix,curve,arrow,tips,frame]{xy}

\[\UseTips
\entrymodifiers={++[o][F]}
\xymatrix @-1mm {
*+\txt{in} \ar[r]
& 1 \ar@(dr,dl)[]^b \ar[r]_a
& 2 \ar@(d,dl)[]^a \ar[r]_b
& 3 \ar ‘u[l] ‘^d[l]_a [l] \ar[r]_b
& *++[o][F=]{4}
\ar ‘dl_l[ll]+/d6mm/‘l_ul[ll]^a [ll]
\ar ‘u^l[lll]+/u1cm/‘l^d[lll]_b [lll]

}\]

In this kind of diagram,1 all states (elements) are enclosed in circles; here we use the
\entrymodifiers command to specify the default modifier to realize this goal. To get
nice arrowheads on the end of curves, we use Computer Modern tips. To keep the diagram a
little more compact, we reduce the interelement spacing by 1 mm (@-1mm before the opening
brace of the \xymatrix command). Starting an entry with an asterisk (i.e., using the form
*〈object〉) overrides the default settings from\entrymodifiers; this feature is used in the
leftmost cell to eliminate the frame and in the rightmost cell to typeset a double circle. Note
that in the latter case the complete modifier specification had to be given. The only other
tricky bit is the use of displacements towards the exterior, which add 6 mm (for a) and 1 cm
(for b) in establishing the locations of the turns.

1We based our example on the deterministic finite automaton diagram in [7, p. 136]; another representation
of the same diagram can be found in [106, Section 3.4], and we also used it for Example 3-4-10 on p. 79.

ch-xypic.tex,v: 1.47 2007/06/03

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 506 — #40

�

�

�

�

�

�

506 THE XY-pic PACKAGE

Note the use of the ^ character in the first position of the label “5”, which places the label
“above” the arrow while the (default) _ character places it “below”.

\usepackage[curve,knot,graph,dvips]{xy}

\[\xygraph{!{0;/r10mm/:}
!{\vover}

[u] !{\hcap[-2]}
[d] !{\vover-}

[ruu] !{\hcap[2]}
}\]
\[\begin{xy} 0;/r10mm/:

,\hcap[-2]\vunder\vunder-
,+(1,2),\hcap[2]

\end{xy}\]
Example

7-4-39

Since all knot crossings are, by default, bounded by a rectangle of one coordinate unit,
and since loop and cap commands do not change the current point, it is convenient to use the
graph feature to put together the various pieces of knot crossings and joins. This is shown
in the top part of Example 7-4-39, where the \vover and \hcap commands position the
elements by using “turtle” movements (up, down, left, right). The bottom part presents a
variant diagram in which an explicit coordinate move was used to place the final \hcap.
Note the use of the scaling factors, [2] or [-2].

Commands are also available to combine pieces in which the strings are basically at
angles of 45 degrees, as in this next example.

a

b

c

d

e

f g

h

i

j

k

l

\usepackage[curve,knot,arrow,dvips]{xy}

\[\renewcommand{\labelstyle}{\scriptstyle}
\begin{xy} 0;/r8mm/:
,{\xcapv-|{a}}
, +(0,1) ,{\xcaph|{b}\xunderh|{c}%

\xcaph|{d}\xcapv|{e}}
,-(3,0),{\xoverh|{f}}
,+(1,0),{\xoverh|{g}}
,-(3,1),{\xcapv-|{h}\xcaph-|{i}}
,+(0,1),{\xunderh-|{j}}
,+(0,-1),{\xcaph-|{k}}
,+(0,1),{\xcapv|{l}}
\end{xy}\]

Example

7-4-40

The placement of the various pieces in this construction is easy to follow by looking at the
labels.

ch-xypic.tex,v: 1.47 2007/06/03

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 511 — #1

�

�

�

�

�

�

C H A P T E R 8

Applications in Science,
Technology, and Medicine

8.1 Typographical rules for scientific texts . 512
8.2 Typesetting chemical formulae . 518
8.3 Alignment and topology plots in bioinformatics 547
8.4 Drawing Feynman diagrams . 555
8.5 Typesetting timing diagrams . 572
8.6 Electronics and optics circuits . 576

Because of its unsurpassed mathematical typesetting, TEX is widely used in the area of sci-
ence, technology, and medicine (STM). It is not surprising, therefore, that the STM commu-
nity has developed a number of packages to typeset the diagrams and schematics needed
in their various disciplines. Chapter 8 of The LATEX Companion, Second Edition [83], de-
scribes in detail the AMS-LATEX package, which makes marking up (higher) mathematics
rather more convenient than with TEX’s basic commands. Chapter 10 of that book mentions
a few simple packages, such as epic, eepic, and pspicture (or the recently released pict2e),
which complement LATEX’s picture environment for drawing “simple” generic graphics. Of
course, the general packages, such as �������� (Chapters 3 and 4) and PSTricks (Chap-
ters 5 and 6), or even the slightly more directed XY-pic package (Chapter 7) may provide all
the functionality you need to typeset even the most complex graphics. Nevertheless, the spe-
cific needs of a given user community are often better served by a more targeted approach;
the packages covered in this chapter address such problem areas.

In scientific texts, precision and consistency are of the utmost importance. Therefore
we start with a brief discussion of typographic conventions in scientific texts. The next two
sections describe packages for typesetting chemical structures and complex biological pro-
tein topologies. Section 8.4 explores various ways of constructing Feynman diagrams, an

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 512 — #2

�

�

�

�

�

�

512 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE

important tool used by physicists. The last two sections turn to electronics and describe ded-
icated packages for drawing timing and circuit diagrams.

8.1 Typographical rules for scientific texts
In scientific texts the typographic representation of a symbol carries a semantic meaning.
Authors working in these areas should, therefore, be aware of and adhere to these typograph-
ical conventions. A brief summary of the most important rules for composing scientific texts
follows (see also [52, 53, 56, 69]).

The most important rule in all circumstances is consistency: a given symbol should al-
ways be presented in the same way, whether it appears in the text body, a title, a figure, a
table, or a formula; on the main line or as a superscript or subscript. An important corollary
for LATEX users is this: always typeset a symbol in either math or text mode—never mix the
two, even if the results appear to be the same. Indeed, with LATEX, the final visual appearance
may change substantially when using a different class file or after adding a new package. For
example, when using PostScript fonts, digits in text are taken from the PostScript text face
and can look quite different from those in formulae. Therefore, it is good practice to always
typeset numbers that refer to a result or part of a formula in math mode—i.e., surrounded
by $.

In scientific texts, many symbols are traditionally typeset as Roman (upright) charac-
ters1 and may not be understood properly otherwise. The most important such symbols are
described here:2

• Units—for example, g, cm, s, keV. Note that physical constants are usually set in ital-
ics, so that units involving constants are mixed Roman–italics, e.g., keV/c (where c is
the speed of light, a constant). Unit symbols are never followed by a period (see Sec-
tion 8.1.1).

• Chemical elements—for example Ne, O, Cu—and elementary particle names—for ex-
ample, p, K, q, H. To help the typist produce typographically correct texts, packages
that contain commands representing the various names have been developed. In par-
ticular, chemists can use chemsym (see Section 8.1.2), while the PEN (Particle Entity
Notation) scheme has been proposed for high-energy physics [34].3

• Standard mathematical functions (sin, det, cos, tan, �, �, etc.), for which the built-in
LATEX functions should be used.

• Numbers.

1With LATEX, Roman type in mathematics mode can be achieved by the \mathrm command.
2See http://physics.nist.gov/Document/typefaces.pdf for a convenient two-page overview.
3Andy Buckley’s heppennames package is an implementation of the PEN notation. He also wrote

hepnicenames, which complements heppennames by providing more “user-friendly” names for often-occurring
particles. These packages do, however, allow you too much freedom by offering the possibility to define the output
style for the particle names. For instance, you can typeset their symbols in italic, a style still often (wrongly) used
in American physics journals, rather than in Roman, as mandated by the IUPAP rules [56] described here. See
Section 8.4.2 for an example of how these packages are used in practice.

ch-science.tex,v: 1.59 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 513 — #3

�

�

�

�

�

�

8.1 Typographical rules for scientific texts 513

Table 8.1: The importance of typographic rules in scientific texts

Roman Type Italic Type
A ampere (electric unit) A atomic number (variable)
e electron (particle name) e electron charge (constant)
g gluon (particle name) g gravitational constant
l liter (volume unit) l length (variable)
m meter (length unit) m mass (variable)
p proton (particle name) p momentum (variable)
q quark (particle name) q electric charge (variable)
s second (time unit) s c.m. energy squared (variable)
t tonne (weight unit) t time (variable)
V volt (electric unit) V volume (variable)
Z Z boson (particle name) Z atomic charge (variable)

• Names of waves or states (p-wave) and covariant couplings (A for axial, V for vector);
names of monopoles (E for electric, M for magnetic).

• Abbreviations that are pieces of words (exp for experimental; min for minimum).

• The “d” in integrands (e.g., dp).

Obeying these typesetting conventions helps the reader understand at first glance the
meaning of a symbol. Table 8.1 shows a few examples in which the meaning of a symbol
depends on its typographic representation.

8.1.1 Getting the units right
The importance of correctly typesetting units was recognized early, and several authors have
developed packages to help users in this respect. Axel Reichert made a first step with his units
and nicefrac packages. More recent and complete approaches are Patrick Happel’s unitsdef
package and Danie Els’s SIstyle package. Both contain useful rules for expressing values of
quantities.1 SIstyle can be used together with Marcel Heldoorn’s SIunits package. This pack-
age, which we shall describe next, is by far the more complete and provides full support for
all units defined by the International System of Units (abbreviated SI2), the modern form of
the metric system. It is the world’s most widely used system of units, both in everyday com-

1The requirements for formatting and typesetting of SI units and numbers are described in the NIST (National
Institute of Standards and Technology) document http://physics.nist.gov/Document/sp811.pdf. A
very handy checklist for reviewing compuscripts is available from http://physics.nist.gov/cuu/Units/
rules.html.

2From the French name Système International d’Unités. The SI was adopted by the “General Conference on
Weights and Measures”, which is also known under its French acronym CGPM (Conférence Générale des Poids
et Mesures; see http://www.bipm.fr/en/convention/cgpm/). The CGPM meets in Paris once every four
years, and the last CGPM was held in October 2003. The SI is a coherent system based on seven base units as
defined in the CGPM 1960 and subsequent conferences. An overview of the SI system is available in the brochure
http://www1.bipm.org/utils/common/pdf/si_brochure_8_en.pdf (eighth edition, 2006).

ch-science.tex,v: 1.59 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 540 — #30

�

�

�

�

�

�

540 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE

Configurations, conformations, and reaction schemes

Numerous configurations of tetrahedral molecules with wedged bonds can be drawn us-
ing variants of the command \tetrahedral. For instance, the following Fischer dia-
gram, which shows the absolute configuration of the sugar D-glucose, uses four nested
\tetrahedral commands.

C

CHO

H OH

CHO H

CH OH

CH OH

CH2OH

\usepackage{xymtexps}

\changeunitlength{0.09pt}
\tetrahedral{0==C;1A==CHO;%

2B==H;4B==OH;3A==%
\tetrahedral{0==C;1==(yl);%

2B==HO;4B==H;3A==%
\tetrahedral{0==C;1==(yl);%

2B==H;4B==OH;3A==%
\tetrahedral{0==C;1==(yl);%

2B==H;4B==OH;3A==CH$\sb{2}$OH}}}}
Example

8-2-39

Finally, reaction schemes containing tetrahedral molecules with wedged bonds can also
be handled. For instance, consider the Walden inversion reaction, which is drawn with the
help of the chemeqn environment and the \reactrarrow command, both of which are
defined in the chemist package (part of the XΥMTEX distribution).

\usepackage{xymtexps,chmst-ps}

\begin{chemeqn}
HO\sp{-}~+~
\raisebox{-28pt}{\ltetrahedralS{0==C;1==Cl;%

2==C$\sb{3}$H$\sb{7}$;%
3A==CH$\sb{3}$;4B==C$\sb{2}$H$\sb{5}$}}

\reactrarrow{0pt}{1cm}{}{}\qquad
\raisebox{-28pt}{\dtrigpyramid[{0{~~$\delta+$}}]%

{0==C;4A==HO$\sp{\delta-}$;%
5A==Cl$\sp{\delta-}$;%
1==C$\sb{3}$H$\sb{7}$;%
2A==CH$\sb{3}$;%
3B==C$\sb{2}$H$\sb{5}$}}

\quad\reactrarrow{0pt}{1cm}{}{}\quad
\raisebox{-28pt}{\rtetrahedralS{0==C;1==HO;%

2==C$\sb{3}$H$\sb{7}$;%
3A==CH$\sb{3}$;4B==C$\sb{2}$H$\sb{5}$}}

~+~Cl\sp{-} \label{myeqn}
\end{chemeqn}

��
− + C Cl

C3H7

CH3
C2H5

δ+
CHOδ− Clδ−

C3H7

CH3C2H5

CHO

C3H7

CH3
C2H5

+��
−

(1)
Example

8-2-40

ch-science.tex,v: 1.59 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 551 — #41

�

�

�

�

�

�

8.3 Alignment and topology plots in bioinformatics 551

8.3.2 Membrane protein topology plots
Eric Beitz also wrote the textopo package, which provides a LATEX interface to generate
shaded membrane protein topology plots. This package provides two new environments,
textopo and helicalwheel.

The textopo environment displays schematic topology plots of membrane proteins. It
allows you to import sequence and topology data or alignment files in various formats. You
can also manually enter the sequence and the positions of the membrane spanning domains
within the environment. The package implementation will generate a basic layout from these
data, which can be further adjusted by adding labels, special styles for the presentation of
residues, automatic or manual shading, and annotations.

\begin{textopo}[parameterfile]
textopo commands

\end{textopo}

The parameter file parameterfile, which is optional, can contain any command defined by the
textopo package to specify user parameter settings. The textopo environment itself must
contain at least one command to load the sequence and topology data for the protein that
must be plotted (i.e., \getsequenceor \sequenceand\MRs, which specify the positions
of the membrane regions).

The following example, which uses the file AQP1.PHD, comes with the distribution.

Example

8-3-6

extra

intra

H2N–•◦M•◦A•◦
S
•◦E•◦I
•◦K•◦K
•◦K•◦L
•◦F•◦W
•◦R•◦A
•◦V•◦V•◦A•◦E
•◦F•◦L•◦A•◦M•◦T•◦L•◦F•◦V•◦F•◦I•◦S•◦I•◦G•◦S•◦A•◦L

•◦G•◦F
•◦N•◦Y
•◦P•◦L•◦E•◦R•◦N•◦Q•◦T•◦L•◦V•◦Q•◦D•◦N•◦V•◦K•◦V•◦S •◦L•◦A•◦F •◦G•◦L•◦S •◦I•◦A•◦T •◦L•◦A•◦Q •◦S•◦V•◦G•◦H•◦I•◦S•◦G•◦A•◦H•◦S•◦N•◦P•◦A

•◦V•◦T
•◦L•◦G•◦L•◦L•◦

L•◦S•◦C•◦Q•◦I•◦S•◦I•◦L•◦R•◦A•◦V•◦M•◦Y•◦I•◦I•◦A•◦Q•◦C•◦V•◦G•◦A•◦I
•◦V•◦A
•◦S•◦A
•◦I
•◦L•◦S
•◦G•◦I
•◦T•◦S
•◦S•◦L•◦L•◦

E•◦N•◦S•◦L•◦G•◦R•◦N•◦D•◦L•◦A•◦R•◦G•◦V•◦N•◦S•◦G•◦Q•◦G•◦L •◦G•◦I•◦E •◦I•◦I•◦G •◦T•◦L•◦Q •◦L•◦V•◦L •◦C•◦V•◦L•◦A•◦T•◦T•◦D•◦R•◦R•◦R•◦R•◦D•◦L•◦
G
•◦G•◦S
•◦A•◦P•◦L•◦A
•◦I•◦G•◦L•◦S•◦V•◦A•◦L•◦G•◦H•◦L•◦L•◦A•◦I•◦D•◦Y•◦T

•◦G•◦C
•◦G•◦I
•◦N•◦P
•◦A•◦R
•◦S•◦F•◦G•◦S•◦A•◦V•◦L•◦T•◦R•◦N•◦F•◦S•◦N•◦H•◦W•◦I•◦F•◦W•◦V•◦G •◦P•◦F•◦I •◦G•◦S•◦A •◦L•◦A•◦V •◦L•◦I•◦Y •◦D•◦F•◦I•◦L•◦A•◦P•◦R•◦S•◦S•◦D•◦F•◦T•◦D•◦R•◦M•◦K•◦V•◦W•◦T•◦S•◦G•◦Q•◦V•◦E•◦E•◦Y•◦D•◦L•◦D•◦A•◦D•◦D•◦I•◦N•◦S•◦

R
•◦V•◦M
•◦K•◦P•◦

K –COOH

\usepackage[]{textopo}

\begin{textopo}
\getsequence{PHD}{AQP1.phd}
% no transmembrane labels
\hideTMlabels
% small font size (range 1-10)
\scaletopo{2}
\end{textopo}

The second environment, helicalwheel, is in its functionality quite similar to
textopo, but produces output that shows helical transmembrane spans as helical wheels

ch-science.tex,v: 1.59 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 584 — #74

�

�

�

�

�

�

584 APPLICATIONS IN SCIENCE, TECHNOLOGY, AND MEDICINE

command sequence for this precedure on a Unix machine would be similar to the following
(depending on where the m4 files are stored):

m4 /usr/local/lib/m4/libcct.m4 cirexa.m4 > cirexa.pic
gpic -t cirexa.pic > cirexa.tex

This leaves us with a TEX file cirexa.tex, which contains only the tpic code for the exam-
ple. To process it further, we could include it into a LATEX source using \input. This stores
the picture in a box register named \graph, so we have to add a \usebox{\graph} state-
ment into the document at the spot where we want it to appear.

Customizing the diagram

To show the flexibility of the circuit_macros approach, let us modify our example
slightly to see how it behaves with an alternating current.

Vac

R

L

iLω

C
1

iCω

.PS
cct_init
linethick=1.6
define(‘dimen_’,0.6)
loopwid = 0.9; loopht = 0.7

source(left_ loopwid,AC); llabel(,V_{ac},)
resistor(up_ loopht,5); llabel(,R,)
inductor(right_ loopwid,W); rlabel(,L,); llabel(,iL\omega,)
capacitor(down_ loopht,); llabel(,C,)

rlabel(,\displaystyle\frac{1}{iC\omega},)
.PE
\usebox{\graph}

Example

8-6-11

After specifying thick lines, we draw an alternating current (AC) source. The resistor
is made a little bigger, and we specify a complex value for the impedance of the self and the
capacitor. Note how we place text at either side of the element with the llabel and rlabel
commands. As the label text is set in mathematics mode, you can freely use math symbols
and other specific commands for math mode (e.g., \displaystyle to choose a larger type
size for the capacitor’s numerator and denominator).

Some authors prefer to draw their circuit elements using a grid. We can write an m4
macro grid, which has two arguments $1 and $2 that define the x and y coordinates at
which the element is to be drawn.

−+
V

R

L

C

.PS
cct_init
gridsize = 0.1
define(‘grid’,‘(gridsize*‘$1’,gridsize*‘$2’)’)

source(left_ from grid(7,0) to grid(0,0),V); llabel(,V,)
resistor(up_ from grid(0,0) to grid(0,5),4); llabel(,R,)
inductor(right_ from grid(0,5) to grid(7,5),W); llabel(,L,)
capacitor(down_ from grid(7,5) to grid(7,0)); llabel(,C,)

.PE
\usebox{\graph}

Example

8-6-12

ch-science.tex,v: 1.59 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 587 — #1

�

�

�

�

�

�

C H A P T E R 9

Preparing Music Scores

9.1 Using TEX for scores—An overview. 589
9.2 Using MusiXTEX. 590
9.3 abc2mtex—Easy writing of tunes . 600
9.4 Preprocessors for MusiXTEX . 615
9.5 The PMX preprocessor . 618
9.6 M-Tx—Music from TeXt . 651
9.7 The music engraver LilyPond . 661
9.8 TEXmuse—TEX and�������� working together 666

Preparing music scores of high quality is a complex task, since music notation can represent
a huge amount of information about the structure and performance of a musical piece.1

While reading a score for performing a music piece, musicians must gather all the informa-
tion they need, including the pitch and the length of the notes, the rhythm, and the articula-
tion. Depending on the instrument, the musical notation may span more than a single stave
(e.g., three or more for the organ), so the amount of data to be processed concurrently can
be quite large. This makes great demands on the musician’s ability, especially when sight-
reading a piece. The quality of the typeset score plays an important role in this process since
it must clearly show the structure of the piece.

High-quality music typesetting requires a good eye and much experience. Until recently,
this type of work has been done by highly trained music engravers who manage, accord-
ing to Helene Wanske [136], no more than one or two pages per day. As in typesetting
of text, a criterion of high quality is the overall look of the page, especially the distribu-
tion of black and white. Several texts about music notation practice have been published,
but they cannot replace a practitioner when it comes to ensuring the aesthetic form of the
score as a whole. The Production Committee of the Music Publisher’s Association has pub-

1The Web site http://www.music-notation.info/ provides a set of pointers to music notation lan-
guages, programs, fonts, etc.

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 588 — #2

�

�

�

�

�

�

588 PREPARING MUSIC SCORES

lished a text that outlines a series of standards for music notation (http://www.mpa.org/
notation/notation.pdf). The Big Site of Music Notation and Engraving (http://www.
coloradocollege.edu/dept/MU/Musicpress/) intends to provide a helpful source
for musicians, typesetters, students, publishers, and anyone else who is interested in music
notation and engraving. See also Jean-Pierre Coulon’s Essay on the true art of music engrav-
ing (http://icking-music-archive.org/lists/sottisier/sottieng.pdf).

In recent years several computer systems for writing scores have been devel-
oped. Encore (www.encoremusic.com), Finale (www.finalemusic.com), and Sibelius
(www.sibelius.com) are examples of commercial products, while Rosegarden (http:
//www.rosegardenmusic.com/) and noteedit (http://developer.berlios.de/
projects/noteedit) are freely available developments. All of these programs are of the
WYSIWYG (What You See Is What You Get) type, and most of them have reached a gen-
uine state of perfection. However, they cannot yet replace an experienced music engraver.
All they can do to ensure high-quality typesetting is to create a “nice” draft: they contribute
to a high-quality score only if they leave the aesthetic decisions to the experienced user.

This role is even more evident when one considers nonstandard situations, which are
encountered in modern music, for which notational requirements are hard to standardize at
all. Indeed, music, as a live art form, evolves continuously, and its current practice is often
quite distinct from that of the 18th and 19th centuries, when the “standard” music notation
was consolidated. Whereas standard notational practices are quite sufficient for popular and
commercial music (and thus the favored target for commercial software), “modern” music
goes well beyond this traditional form, in particular in its graphic representation. Moreover,
musicology has notational needs (e.g., symbols for highlighting certain notes, unusual ties,
superposition of staves) for the analysis of all kinds of music—classical and contemporary,
western and oriental, ethnic from various peoples of the world—that go well beyond the pos-
sibilities of current professional typesetting applications. What is needed is a programmable
system, and here TEX can be an important player.

In this chapter, after a short historical introduction (Section 9.1), we first consider
MusiXTEX, a set of TEX macros that build a very powerful and flexible tool for typesetting
scores. As MusiXTEX makes no aesthetic decisions—these choices must all be made by the
typesetter—it is quite complex to use. Therefore several preprocessors have been developed
to provide an easier interface. In Section 9.3, we introduce the abc language, which is in
widespread use for folk tunes. In Section 9.5, we describe the PMX language, which makes
entering polyphonic music more convenient. In Section 9.6, we have a look at the M-Tx lan-
guage, an offspring of PMX, which adds, among other features, support for dealing with
multi-voice lyrics in scores. In Section 9.7, we introduce LilyPond, a music typesetter writ-
ten in C++, while Section 9.8 says a few words about TEXmuse.

The Werner Icking Music Archive (http://icking-music-archive.org)contains
a lot of material related to music software. In particular, it is the definitive archive of soft-
ware related to MusiXTEX, including pointers to the latest developments of abc, PMX, M-Tx,
and their brethren. It also contains hundreds of freely available music scores typeset with
MusiXTEX, often with accompanying input files, so that it is an ideal source of examples.

This chapter is somewhat unusual as it contains little LATEX: MusiXTEX is essentially low-
level TEX, albeit with a LATEX interface; some of the programs discussed to translate musical
languages, such as abc, even bypass TEX altogether. We nevertheless believe that it is appro-

ch-music.tex,v: 1.55 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 601 — #15

�

�

�

�

�

�

9.3 abc2mtex—Easy writing of tunes 601

a little practice, most users can play a tune directly from the abc notation (without gen-
erating sheet music output). Moreover, the simplicity and clarity of the notation make it
a straightforward matter to notate tunes that are stored in a computer file. In addition,
these files can be easily exchanged by e-mail, thus enabling dissemination and discussion
of the music. In fact, the abc language has become the de facto standard among folk musi-
cians, and thousands of tunes in abc notation are now available on the Internet (see, e.g.,
http://abcnotation.org.uk/tunes.html).

9.3.1 Writing an abc source
To see how an abc source is built up, consider the following example:

Example

9-3-1

1. Sur le pont d’Avignon

G2 2
4 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇÐ̌Ð

ˇ ˇ ˇÐ̌Ð
ˇ

G2 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇÐ̌Ð
ˇ ˇ ææ̌ (ˇ (ˇ

G2 ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ

X:1
T: Sur le pont d’Avignon
M:2/4
L:1/8
K:F

FF F2 | GG G2 | ABcF | EFGC |
FF F2 | GG G2 | ABcF | GE F || F |
FF FF | G2 FF | FFFF | G2 F2 |]

An abc source consists of two parts: a header and a body. The header (shown in blue in
the examples) contains information fields, each starting with an uppercase letter to denote
the kind of information, followed by a colon. The body consists of the music piece itself.
Within the body, additional information fields can be inserted that are used for changes to
the header information (e.g., the key, meter, or tempo).

Table 9.3 shows all possible information fields, most of which are optional. A few words
about the more important ones follow.

• Musical information:

– K: the key, consisting of a capital letter possibly followed by a # or b for
sharp or flat, respectively. You can use major keys (e.g., K:Emaj) or minor keys
(K:gmin), or specify other modes, such as Mixolydian (K:AMix) and Dorian
modes (K:EDor).

– L: the default note length (i.e., L:1/4 for a quarter note, L:1/8 for an eighth note,
etc.). The default note length is also set automatically by the meter field M:.

– M: the meter, such as M:3/4, M:C (common time), or M:C| (cut time).

ch-music.tex,v: 1.55 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 645 — #59

�

�

�

�

�

�

9.5 The PMX preprocessor 645

Example

9-5-36

Cb

Vc

Va

Vl II

Vl I

Tp

Tb (do)

Cr (do)

Fg

Ob

Fl

I

I
K
G

G

I
G

G

I
G

G

S

S

S

S

S

S

S

S

S

S

S

f̌

f̌

f

ˇ
f̌

f̌

ˇ
f

ˇˇ
f

ˇˇ
f

a2ˇ
f

a2ˇ

Allegro vivace

f

ˇ

?

?

?

?

?

>

>

>

?

?

?

3
ˇ Ő̌ŐŐŐ̌

3
ˇ Ő̌ŐŐŐ̌

3

ˇ Ő̌ŐŐŐ̌
3

ˇ ˇ ˇ
3

ˇ ˇ ˇ

3
ˇ Ő̌ŐŐŐ̌

3

ˇ Ő̌ŐŐŐ̌

3ˇŐ̌ŐŐŐ
ˇ

ˇ

ˇ

ˇ
ˇ

ˇ

ˇ

ˇ ˇ

ˇ ˇ

ˇ

ˇ

ˇ

?

?

?

?

?

>

>

>

?

?

?

3
ˇ Ő̌ŐŐŐ̌

3
ˇ Ő̌ŐŐŐ̌

3

ˇ Ő̌ŐŐŐ̌
3

ˇ ˇ ˇ
3

ˇ ˇ ˇ

3
ˇ Ő̌ŐŐŐ̌

3

ˇ Ő̌ŐŐŐ̌

3ˇŐ̌ŐŐŐ
ˇ

ˇ > <

ˇ > <

ˇ > <
ˇ > <
ˇ > >

ˇ > <

ˇˇ > <

ˇˇ > <

ˇ > <

ˇ > <

ˇ
> <

? ‰-ˇ

˘
¯
˘

ˇ` -ˇ

˘

˘

ˇ` -ˇ

=

=

=

=

=

=

=

˘

˘
˘

˘

ˇ
>

ˇ >

ˇ >

ˇ >

=

=

=

=

=

=

=

ch-music.tex,v: 1.55 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 651 — #65

�

�

�

�

�

�

9.6 M-Tx—Music from TeXt 651

9.6 M-Tx—Music from TeXt
After describing the PMX language we now turn to Dirk Laurie’s M-Tx language,1 which
adds a layer of convenience to PMX, making entering information—in particular, in the
preamble—more intuitive. By its very conception, it offers also a straightforward way for
adding words (lyrics) to the music.

Let us first have another look at Section 9.4 on page 615, especially the example com-
paring the coding of the first bars of the Mozart piece. One large difference between PMX
and M-Tx coding is that, with M-Tx voice (instrument) lines are input as they are printed (i.e.,
from top to bottom), whereas with PMX they are entered last line first (i.e., from bottom to
top).

Example

9-6-1

ĲPiano I
G

4
4

4
4

Riff in C
W. A. Mozart (1756–1791)

ˇ ˇ ˇ ˇ ˇ ˇ ˇ ˇ
˘ ˇ ˇ

ˇ ˇ ˇ
ˇ`

ˇ
ˇĞĞĞĞ
ˇ

ˇ ˇ ˇ ˇ
˘

Title: Riff in C
Composer: W. A. Mozart (1756--1791)
Style: piano
Name: Piano
Meter: 4/4
Size: 16
Indent: 0.18

%% w70m

c2+ e4 g | b4d- c1 d c2 |
c8 g+ e g c- g+ e g | d g f g c- g+ e g |

Example 9-6-1 was compiled by the M-Tx processor prepmx, which transforms the M-Tx
input file into a PMX file to be run through the pmxab processor.

> prepmx 9-6-1
==> This is M-Tx 0.60 (Music from TeXt) <16 March 2005>
==>> Input from file 9-6-1.mtx
Writing to 9-6-1.pmx
instrumentNames = TRUE
PrePMX done. Now run PMX.

> pmxab 9-6-1
This is PMX, Version 2.506, 14 Nov 04
Opening 9-6-1.pmx
Starting first PMX pass
Bar 1 Bar 2
Done with first pass
Starting second PMX pass
Bar 1 Bar 2
Writing ./9-6-1.tex
Done with second PMX pass.

The prepmx processor has several options, all of which are described in the M-Tx manual.

1The M-Tx entry on the home pagehttp://icking-music-archive.org/software/indexmt6.html
of the Icking Music Archive provides pointers to the latest version of the distribution, manual, examples, and
related utilities.

ch-music.tex,v: 1.55 2007/06/15

�

�
“tlgc2” — 2007/6/15 — 15:38 — page 661 — #75

�

�

�

�

�

�

9.7 The music engraver LilyPond 661

9.7 The music engraver LilyPond
In 1996, in the previous edition of this book, we described Jan Nieuwenhuizen’s MPP
MusiXTEX preprocessor [89]. Since then, Jan and his colleague Han-Wen Nienhuys have aban-
doned that system and developed LilyPond,1 an “automated engraving system that formats
music beautifully and automatically and has a friendly syntax for its input files”. They no
longer use TEX as the basic typesetting engine but have developed a large C++ program
(more than 6000 lines of code); they also use Python and Scheme code, as well as a specially
designed font family (feta), which is available in various formats (PostScript Type 1, Open-
Type, and SVG).

9.7.1 The LilyPond source language
To typeset one note, four kinds of information can be specified: notename, octave, duration,
and features. Only the notename is mandatory. All this information is coded in the given
order with no intervening spaces; a blank separates two notes.

Notes are denoted by lowercase letters. A comma (,) following the letter transposes
the note one octave deeper, while a right quote (’) makes it an octave higher. To generate
different clefs, use the command \clef followed by either treble, alto, tenor, or bass.
The following example shows some pitches and ways to generate different kinds of bar lines.

{c d \bar "|" e f \bar "|:" g c’ \bar "||"
d’ e’ \bar ":|" f’ g’ \bar ".|" c’ d’ \bar ".||." \break
e’’ f’’ g’’ c’’’ \bar ":|:"
d’’’ e’’’ f’’’ g’’’ \bar "|." c’ c c, c,, \bar ":" }

Example

9-7-1

�� ��� �� � ���� � ��
� ��

���������
�

� ��
�

�

�4

� �
� ��

1The LilyPond home page is at www.lilypond.org, where you can download the latest version of the system.
There is also a tutorial, the reference guide, and much more. Of particular interest is the essay “What is behind
LilyPond?”, which explains the authors’ views on problems in music notation (software) and their approach to
solving them.

ch-music.tex,v: 1.55 2007/06/15

textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:6:16:16
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:7:34:34
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:7:1:1
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:7:20:20
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:7:4:4
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:6:36:36
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:6:1:1
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:6:34:34
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:7:37:37
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:6:3:3
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:7:17:17
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:6:18:18
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:8:1:1
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:9:38:38
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:9:1:1
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:9:16:16
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:9:11:11
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:9:41:41
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:8:9:9
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:9:33:33
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:9:36:36
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:8:5:5
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:9:6:6
textedit:///raid/data0/frank/documents/books/lgc2/EX/9-7-1.ly:8:13:13

�

�
“tlgc2” — 2007/6/27 — 17:59 — page 667 — #1

�

�

�

�

�

�

C H A P T E R 10

Playing Games

10.1 Chess . 668

10.2 Xiangqi—Chinese chess . 687

10.3 Go . 690

10.4 Backgammon . 696

10.5 Card games . 698

10.6 Crosswords in various forms . 702

10.7 Sudokus . 709

Board and card games have a long history, and thousands of books in many languages have
been dedicated to chess, Go, cards, and the like. These books almost always use diagrams to
explain the rules or show the evolution of a game. In the present chapter we look at a number
of examples showing how to prepare such graphical presentations with LATEX.

Most game packages are concerned with making available either a special font for type-
setting the right symbols or macros for producing nice examples of the state of play. The
highly developed field of chess notation, however, lends itself well to an algorithmic typeset-
ting system like LATEX. The chess packages, with which we begin, keep track of the state of
moves and allow various forms of output.

We move next to the rather similar games of Chinese chess and Go, followed by
backgammon. We then look at cards, where the classic game of bridge has a special pack-
age, before concluding the chapter with the esoteric subject of crossword and Sudoku puz-
zles. Although crossword design is not a game, it has some similar typesetting problems,
and LATEX-using crossword makers will enjoy using the sophisticated package to help them.
In the case of Sudoku, there is even a package that generates new puzzles or solves existing
ones.

�

�
“tlgc2” — 2007/6/27 — 17:59 — page 682 — #16

�

�

�

�

�

�

682 PLAYING GAMES

\ahead \dummy \ddummy

It is, of course, also possible to talk about the next move in a commentary started with \[or
[: simply prefix the first move inside with\ahead .

If certain moves are irrelevant for the analysis you can use \dummy or \ddummy to ad-
vance the game state by one or two half-moves, respectively. This means that skak can’t fol-
low the position on the board any longer, so texmate immediately disables this functionality
with \SkakOff upon encountering these commands for the remainder of the variation.

French Defense analysis:
1. e4 e6 2. d4 d5 3.¤c3¥d4 4. e×d5 e×d5 5.¥d3
¤c6 6. a3 ¥e7 7. ¥f4! [7. . .¤×d4?! 8. ¥b5+!
¤c6 9. ¤×d5 ¥d6 10. £e2+ ¤ge7 11. ¦d1 ¥d7
12.¥×c6¥×c6 13.¤×c7+!h] 7. . . a6! [7. . .¥e6
8. ¤f3 ¤f6 (8. . .¥g4 9. h3! ¥h5 10. ¤b5!¦c8
¥f5!h) 9. ¤b5! ¦c8 10. ¤e5! ¤×e5 11. d×e5 . . .
12.¤×a7] 8.¤f3!

\usepackage{texmate}
\setchessfontfamily{leipzig}

French Defense analysis:\\
| e4 e6 ; d4 d5 ; Nc3 Bd4 ; exd5 exd5 ;
Bd3 Nc6 ; a3 Be7 ; Bf4! [\ahead Nxd4?! ;
Bb5+! Nc6 ; Nxd5 Bd6 ; Qe2+ Nge7 ;
Rd1 Bd7 ; Bxc6 Bxc6 ; Nxc7+!\wdecisive]
a6! [Be6 ; Nf3 Nf6 [Bg4 ; h3! Bh5 ; Nb5!
Rc8 ; Bf5!\wdecisive] ; Nb5! Rc8 ;
Ne5! Nxe5 ; dxe5 \dummy\,\dots Nxa7] Nf3! |

Example

10-1-19

If there are multiple variations to discuss as alternatives at a certain point in the game,
you can use the variations environment or its starred form.

\begin{variations}\var variation1 \var variation2 . . . \end{variations}

Inside the variations environment, each variation is introduced with a \var command.
This will typeset the first move of a variation in boldface and separate variations by a semi-
colon. Alternatively, you can use \var*, in which case no special formatting is applied. The
starred form variations* of the environment is equivalent to using \var* for all varia-
tions.

++q+*+
+*+*N*+*
++mO*K
+*+*+*+*
++lNo+
+pO*+*+*
*+*Pp+v+
+*+*+*+*

Mate in 3 moves by Bayersdorfer, 1888

1. ¤d3!E2. £a8+ ¢d4 3. £a4# [1. . .¤d4
2. ¤c5+ ¢e5 (2. . .¢f4 3. £b8#) 3. £b8# ;
1. . . c×d2 2. ¤f5! E£×e6# ¢d5 (2. . .¢×f5
3.£g6#) 3.£a8#]

\usepackage{texmate}
\setchessfontfamily{leipzig}

\position{4Q3/4N3/4np1K/8/4kNp1/1Pp5/3PP1b1/8}
\shortstack{\showboard\\

Mate in 3 moves by Bayersdorfer, 1888}

| Nd3! \Threat<\withidea Qa8+ Kd4 Qa4 \#>
[\ahead\begin{variations}

\var Nd4 Nc5+ Ke5 [Kf4 Qb8 \#] Qb8 \#
\var cxd2 Nf5! \threat<Qxe6 \#>

Kd5 [Kxf5 Qg6 \#] Qa8 \#
\end{variations}] |

Example

10-1-20

ch-games.tex,v: 1.60 2007/06/27

�

�
“tlgc2” — 2007/6/27 — 17:59 — page 689 — #23

�

�

�

�

�

�

10.2 Xiangqi—Chinese chess 689

Example

10-2-2
�

�
�

�
�

��

�
�

�
�

�
��

�
�

�
�

�
��

�
�

�
�

�
��

� �� �� �� �

� �

� � � � �

�

� �	 	

� �

� �

�

Figure 10.1: Initial setup of Chinese chess game (xiangqi)

The following listing, a mate situation after four moves, gives an example of the use of
this command. The board situation after these four moves is shown in Example 10-2-4 on
the following page.

Example

10-2-3

1. � h3–e3 � b0–a8

2. � e3×e7 � a0–a9

3. � b3–b5 � h0–g8

4. � b5–e5 mates!

\usepackage{cchess}

\newcommand\x{\times} % a shortcut to denote capture
\begin{tabbing}
1. \= \textpiece{c}h3--e3 \qquad

\=\textpiece{N}b0--a8 \\
2. \> \textpiece{c}e3\x e7 \>\textpiece{R}a0--a9 \\
3. \> \textpiece{c}b3--b5 \>\textpiece{N}h0--g8 \\
4. \> \textpiece{c}b5--e5 mates!
\end{tabbing}

The position environment draws a complete board. Within its body, the \piece
command is used to place the individual pieces.

ch-games.tex,v: 1.60 2007/06/27

�

�
“tlgc2” — 2007/6/27 — 17:59 — page 692 — #26

�

�

�

�

�

�

692 PLAYING GAMES

indicates the color of the first stone being placed. This method is most suitable to record
games or longer sequences where the order of play needs to be indicated.

��������
���������
���������
����������
���������
���������
��������
��������

���������
����������
������������
�������������
�����������
����������
���������
���������

\usepackage{igo}

\white[\igonone]{q3,q5,p5,p6,p4,q7}
\showgoban[m1,t8]
\white[6]{r5,r6,s5,n6,m4}
\showgoban

Example

10-3-2

If \whiteor \black is used without an optional argument or if the optional argument
is \igotriangle , \igosquare , \igocircle , or \igocross , then all stones typeset
are of the same color and decorated with the respective glyph as specified by the optional
argument. This input method is most suitable for documenting Go problems, where the
order of stones placed previously is unimportant.

�������
��������
��������
�����������
����������
�����������
���������
�������

�������
��������
��������
�����������
�����������
���������� ��
�����������
�����Æ�	�

\usepackage{igo}

\white{o3,q2,q3,q4,r2,r5,r6,r7}
\black{p5,q5,r3,r4,s4,s5,t3}
\showgoban
\black[\igotriangle]{s2}
\white[\igosquare]{s1}
\gobansymbol{s3}{a}\gobansymbol{t4}{b}
\white[1]{t2,t1}
\showgoban

Example

10-3-3

\cleargobansymbols

Once the progress in a game has been shown in a diagram, it is customary to show
the already placed stones in later diagrams without numbers, achieved by issuing a
\cleargobansymbols command. This helps in identifying newly placed stones and
makes the diagrams more readable. Whether numbering is continued is a matter of taste.
Although igo supports sequentially numbered stones for a full game, for readability it is usu-
ally better to restart numbering when three-digit numbers are reached and you can afford
to typeset more than a single diagram.

�����
�����
�����
�����
�����
������
�����
�����

�������
��������
��� ������
�������� ��
��������
��������
�������
�������

���������
����������
������������
�������������
�����������
����������
���������
���������

\usepackage{igo}

\white{q3}
\showgoban[p1,t8]
\black[1]{q5,p5,p6,p4,q7}
\gobansymbol{r5}{a}\gobansymbol{o6}{b}
\showgoban[n1,t8]\cleargobansymbols
\white[6]{r5,r6,s5,n6,m4}
\showgoban

Example

10-3-4

ch-games.tex,v: 1.60 2007/06/27

�

�
“tlgc2” — 2007/6/27 — 17:59 — page 696 — #30

�

�

�

�

�

�

696 PLAYING GAMES

10.4 Backgammon
Jörg Richter’s package bg defines two LATEX environments, position and game, to display
backgammon games. The position environment draws a single board and is thus conve-
nient for discussing a problem, while with the game environment you can enter each move
individually. In the latter case the board positions are stored internally, allowing the “cur-
rent” status to be drawn at any time.

By convention, the homes of both players are on the left-hand side, with white’s home
at the top and black’s home at the bottom. Unlike in the other packages discussed so far,
positions on the board are not denoted with absolute coordinates but rather are numbered
as viewed by the party whose move is being placed (e.g., white’s 24 corresponds to black’s 1,
and so on). Moves are always performed from high to low numbers, and the cube is always
on the right-hand side of the board.

\begin{position} . . .\end{position}

The position environment initializes an empty board into which stones are placed by the
commands described below. Some of these commands also allow you to customize some
aspects of the board’s layout. The board is printed when the \end{position} command
is encountered. Example 10-4-1 shows the use of various commands of the position envi-
ronment.

����������	
����������������
�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�
�
�
�

�
�

�
�

�
�
�
�
�

!
�
�
�
�

�
�
�
�
�

�
�
�
�
�

"
#
�
�
�

�
�
�
�
�

�����������������
�
�
�
�
�

$
%
&
'
(

)
*
+
,
-

$
%
&
'
.

)
*
+
/
0

$
%
&
1
2

)
*
3
/
0

�
�
�
�
�

�
�
�
�
4

�
�
�
�
�

$
%
&
1
2

)
*
+
,
0

$
%
&
'
(

)
*
+
,
0

$
%
&
'
(

)
*
+
,
-

�
�
�
�
��������������

�56789:���;<Ǳ>?@

�
�
�
�
�
��
����
�
�
�
�
�
�

White to play 3–2

\usepackage{bg}

\begin{position}
\normalboard
\whitepoint{3}{2} \whitepoint{4}{2}
\whitepoint{5}{2} \whitepoint{6}{3}
\whitepoint{7}{3} \whitepoint{8}{1}
\whitepoint{11}{1} \whitepoint{22}{1}
\blackpoint{24}{1} \blackpoint{13}{2}
\blackpoint{10}{1} \blackpoint{8}{1}
\blackpoint{7}{2} \blackpoint{6}{3}
\blackpoint{5}{2} \blackpoint{4}{2}
\blackbar{1}
\shownumbers \middlecube{1} \showcube
\whiteonmove
\boardcaption{White to play 3--2}
\end{position}

Example

10-4-1

\blackpoint{p}{n} \whitepoint{p}{n}

These two commands are used to place stones on the board; n denotes the number of stones
to place and p denotes the point where they are positioned. It is important to remember that
these points are numbered downwards from 24 relative to the home position of each player.

ch-games.tex,v: 1.60 2007/06/27

�

�
“tlgc2” — 2007/6/27 — 17:59 — page 701 — #35

�

�

�

�

�

�

10.5 Card games 701

Example

10-5-4

♠ –
♥ 7 4 2
♦ J 6 3
♣ 8 6

♠ J 10 9
♥ 10 6
♦ Q 9 7 2
♣ –

�

�

�

�

♠ 8 5
♥ Q J 8 3
♦ K 4
♣ –

♠ –
♥ A K 9 5
♦ A 10 8 5
♣ –

\usepackage{bridge}

\crdima{}{}
{\hand{--}{7 4 2}{J 6 3}{8 6}}
{\hand{J 10 9}{10 6}{Q 9 7 2}{--}}
{\hand{8 5}{Q J 8 3}{K 4}{--}}
{\hand{--}{A K 9 5}{A 10 8 5}{--}}

In discussing certain techniques of play, often only the card distribution in a single suit
is shown. In that case it would be nice not to use the \hand command in the arguments of
\crdima, but unfortunately the result is not quite what we would expect.

Example

10-5-5

♣ A Q
♣ J 5

�

�

�

�

♣ K 6

♣ 7 4

\usepackage{bridge}

\crdima{}{}
{\club{} A Q}
{\club{} J 5}{\club{} K 6}
{\club{} 7 4}

In this case a solution using the tabular environment gives better results. The first ar-
gument specifies the suit of interest, and the other arguments correspond to the four players
(with the same order as in the \crdima command). Note the use of the \multicolumn
command to suppress the vertical lines in the first and last rows.

Example

10-5-6

♣ A Q

N

♣ J 5 W E ♣ K 6

S

♣ 7 4

\usepackage{bridge}
\newcommand{\Crdexa}[5]{{\renewcommand\arraystretch{1.2}%

\begin{tabular}{l|@{}c@{}|l}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{#1 #2} \\
\cline{2-2}

& N & \\
#1 #3 &W\hfill\hfill E& #1 #4 \\

& S & \\
\cline{2-2}
\multicolumn{1}{c}{} & \multicolumn{1}{c}{#1 #5}

\end{tabular}}}

\Crdexa{\club}{A Q}{J 5}{K 6}{7 4}

Bidding

An important part of the bridge game is the initial bidding phase, in which the players decide
who plays the contract. To document such a bidding sequence, Kees van der Laan introduced
a bidding environment as an application of LATEX’s standard tabbing environment.

ch-games.tex,v: 1.60 2007/06/27

�

�
“tlgc2” — 2007/6/27 — 17:59 — page 703 — #37

�

�

�

�

�

�

10.6 Crosswords in various forms 703

Example

10-6-1

34

333231

3029

28272625

2423

222120

191817

1615

1413121110

9

876

54321

ACROSS
2 Gap between tree node labels and the node in PSTricks

(5)
4 Modern replacement for scissors and glue (4)
6 A Unicode TEX variant (5)
7 . . . you always wanted to know but never dared to ask

(3)
8 A graphics key that needs four numbers (2)
10 Called bb in Karl Berry’s font-naming schemes (5)
12 A way to make your pages into thumbnails (5)
15 You can do it to a box but it isn’t proper LATEX (5)
19 In LATEX denotes ℘; in other circumstances might mean

a word processor (2)
20 Result of a TEX run (3)
21 A language whose name should probably have five

letters, but then it was developed for Unix (4)
24 It’s not Intel (5)
25 A pointer misspelled (3)
27 Testing your LATEX knowledge: ≺ (4)
28 Label for a signal line (3)
29 Another name for the LATEX3 project team on c.t.t. (4)
30 One way to get a sharp in MusiXTEX (2)
31 A figure or plan intended to explain rather than

represent actual appearance (7)
33 72.27 to an inch (2)
34 see 1d (5)

DOWN
1 & a34 Grand wizard of TEX (3,5)
2 A ready-to-run TEX for Unix (5)
3 A novice golfer’s dream (3)
4 LATEX 2ε name for document style (5)
5 Double beam above notes in MusiXTEX (4)
9 Either/or—mathematically speaking (3)
10 German beer (3)
11 Save your coordinates (PSTricks) (5)
12 Approximation of TEX’s version number (2)
13 A PostScript operator (7)
14 Probability function (2)
16 A divine messenger misspelled (5)
17 How do you get an Å? (2)
18 ξ (2)
22 LATEX has rigid and rubber ones (6)
23 Amor uses them and XY-pic calls them (2)
24 Length of the line segment where the connector

joins the first node (4)
25 Files containing LATEX font-definition

documentation (3)
26 η—don’t say this is all Greek to you (3)
27 ⊥, also the first letters of everlasting (4)
30 We plot it in Chapter 4 (3)
32 TEX’s name for inch (2)
33 Lula is chief of (2)

Figure 10.2: A sample crossword for you to fill in (done with crosswrd)

ch-games.tex,v: 1.60 2007/06/27

�

�
“tlgc2” — 2007/6/27 — 17:59 — page 710 — #44

�

�

�

�

�

�

710 PLAYING GAMES

The size of the grid can be adjusted by setting\sudokusize(the default value is10cm),
and the size and font for the numbers can be manipulated by redefining \sudokuformat
as shown in Example 10-7-1. The default definition uses \Huge to fit the larger grid size.
The package also offers the environment sudoku, which is simply an abbreviation for
sudoku-block inside a center environment.

10.7.2 sudokubundle—Solving and generating Sudokus
In 2006, Peter Wilson published a bundle of three packages that not only typeset but also
attempt to solve existing Sudokus or generate new ones. In contrast to the sudoku package,
with Wilson’s bundle the puzzles have to be stored in external files and require a somewhat
different input syntax.

In these external files, only the first nine lines are relevant. Each must consist of nine
characters, either a dot (representing an empty cell) or one of the numbers 1 to 9 (indicating
prefilled cells). Any further lines can be used for comments and will not be read by LATEX.

The printsudoku package provides the command \sudoku for typesetting such files. It
also offers a \writepuzzle command to write external Sudokus into separate files, but for
this purpose a filecontents* environment, as used in the next example, or a simple text
editor is equally or even more suitable.

9 6 4

4

1 3 6 7 2

4 6 9

9 3

2 5 4

9 2 5 7 8

5

3 4 6

\usepackage{printsudoku}
\begin{filecontents*}{sample.sud}
..9....64
4........
1..36..72
..46....9
...9.3...
2....54..
92..57..8
........5
34....6..
A moderate challenge
\end{filecontents*}

\cluefont{\small}
\cellsize{1.2\baselineskip}
\sudoku{sample.sud}

Example

10-7-2

As seen in the previous example, the size of the puzzle and the numbers in-
side are controlled through \cluefont (default \Huge) and \cellsize (default
2.5\baselineskip), respectively. Note that compared to the sudoku package these are
declarations, rather than length registers or macros, and thus are changed in a different way.
For example, to get sans serif numbers, we would need to use \sffamily instead of using
\textsf.

The solvesudoku package attempts to solve a given puzzle and prints the solution as far
as it was able to produce it. Given that TEX isn’t the best language in which to implement
complicated algorithms, it does a surprisingly good job and is able to fully resolve most

ch-games.tex,v: 1.60 2007/06/27

�

�
“tlgc2” — 2007/6/15 — 15:39 — page 713 — #1

�

�

�

�

�

�

C H A P T E R 11

The World of Color
11.1 An introduction to color . 714
11.2 Colors with LATEX — The color and xcolor packages 719
11.3 Coloring tables . 737
11.4 Color slides with LATEX — The beamer class . 752

For many people, color is indispensable for effective graphics. All of the modern interactive
drawing packages support coloring of lines, filling objects with color, etc., and all of the stan-
dard bitmap file formats such as GIF (Graphics Interchange Format), PNG (Portable Net-
work Graphic), JPEG (Joint Photographic Experts Group), PBM (Portable Bitmap), TIFF
(Tagged Image File Format), BMP (Windows Bitmap), SVG (Scalable Vector Graphic), and
Encapsulated PostScript support color. Thus, if you generate a picture with a drawing pack-
age, and then import it into your LATEX document using the packages described in Chapter 2,
you should have no problems if your printing or viewing device supports color. However,
you do have to know something about how color is represented and which color model you
are using. We discuss these issues in the first part of this chapter.

If you prepare your graphics using LATEX itself or simply want colored text, you need
some special support from both LATEX and your driver. The main body of this chapter de-
scribes the extended LATEX xcolor package, which we believe is powerful enough to meet
almost all needs and is capable of working with most other packages. xcolor extends the old
color package with features such as color mixing, color sequences, and tabular shading.

LATEX users often request color for use in presentations. The xcolor package can, of
course, be used with old LATEX slides classes, but we devote some space to explaining a more
sophisticated class, beamer, and give lots of examples of its facilities.

As the book is printed in two colors, it is possible to show some color effects in examples.
All other colors will appear in grayscale throughout the text. However, we repeat selected ex-
amples in the color plates. We indicate when the reader should refer to the full-color version.
You can also take the example source code, run it through LATEX or pdfLATEX, and view the
PostScript or PDF output.

�

�
“tlgc2” — 2007/6/15 — 15:39 — page 724 — #12

�

�

�

�

�

�

724 THE WORLD OF COLOR

Some further examples (also in Color Plate XIII b) show how to control the exact form
of the box with the \fbox parameters \fboxrule and \fboxsep, which specify the thick-
ness of the rule and the size of the shaded area respectively.

Fun with color Fun with color

Fun with color Fun with color

\usepackage{color}

\setlength{\fboxrule}{6pt}%
\setlength{\fboxsep}{10pt}%
\colorbox{yellow}{Fun with color}\qquad
\fcolorbox{red}{yellow}{Fun with color}
\par\bigskip\par
\setlength{\fboxrule}{2pt}%
\setlength{\fboxsep}{5pt}%
\colorbox{green}{Fun with color}\qquad
\fcolorbox{red}{green}{Fun with color}

Example

11-2-6

Combining the use of PostScript fonts and color, you can construct lists with colorful
elements; the \ding command is part of the pifont package described in [83, p. 378].

❑ On the first day of Christmas my
true love sent to me

☛ a partridge in a pear tree

❑ On the second day of Christmas
my true love sent to me

☛ two turtle doves

☛ and a partridge in a pear tree

❑ On the third day of Christmas my
true love sent to me

☛ three French hens

☛ two turtle doves

☛ and a partridge in a pear tree

\usepackage{pifont,color}
\newenvironment{coldinglist}[1]

{\begin{list}{\textcolor{blue}{\ding{#1}}}{}}
{\end{list}}

\newcommand\OnThe[1]{On the \textcolor{blue}{#1} day of
Christmas my true love sent to me}

\begin{coldinglist}{113}
\item \OnThe{first}
\begin{coldinglist}{42}

\item a partridge in a pear tree
\end{coldinglist}
\item \OnThe{second}
\begin{coldinglist}{42}

\item two turtle doves
\item and a partridge in a pear tree

\end{coldinglist}
\item \OnThe{third}
\begin{coldinglist}{42}

\item three French hens
\item two turtle doves
\item and a partridge in a pear tree

\end{coldinglist}
\end{coldinglist}

Example

11-2-7

More complicated color support can be obtained in the framework of the colortbl package,
which allows you to produce colored tables (see Section 11.3) or the beamer class, which
makes color slides (see Section 11.4).

ch-colour-xcolor.tex,v: 1.64 2007/06/13

�

�
“tlgc2” — 2007/6/15 — 15:39 — page 731 — #19

�

�

�

�

�

�

11.2 Colors with LATEX — The color and xcolor packages 731

followed by a number. This number describes the percentage of this color to use in the mix,
with the remainder being white.

Example

11-2-13

\usepackage{xcolor}

\newcommand\blob[1]{{\color{#1}\rule{1.5cm}{5mm}}}
\blob{blue} \blob{blue!75} \\ \blob{blue!50} \blob{blue!25}

What we see in this example is actually an abbreviation of the more general syntax for
Tone and shademixing colors: if the second color in the mix is not white, you have to specify it as well by

adding it to the right, again separated by an exclamation mark. The next example shows the
mixing of blue with black (called adding tone) and gray (called shading).

Example

11-2-14

\usepackage{xcolor}

\newcommand\blob[1]{{\color{#1}\rule{1.5cm}{5mm}}}
\blob{blue} \blob{blue}\\
\blob{blue!75!black} \blob{blue!75!gray}\\
\blob{blue!50!black} \blob{blue!50!gray}\\
\blob{blue!25!black} \blob{blue!25!gray}

It is also possible to mix more than two colors in this way, but you have to understand
Colorful mixhow the algorithm works to do it successfully. Assume you have the three colors in individual

buckets and some empty buckets for mixing. You mix the first two colors according to the
specified percentage into a free bucket. That gives you a new color in that bucket. Then you
use this color and mix it with the third color again into a free bucket, etc.

If you want to mix several colors with a specific percentage in the final mix, that can still
be quite tricky. The next example reimplements the mix of blue and gray (which is a 50%
mix of black and white) from the previous example. Here it is clearly simpler to first mix
black and white and then blue to obtain the same results as before.

Example

11-2-15

\usepackage{xcolor}

\newcommand\blob[1]{{\color{#1}\rule{1.5cm}{5mm}}}
\blob{blue} \blob{blue} \\
\blob{white!50!black!25!blue} \blob{blue!75!gray}\\
\blob{white!50!black!50!blue} \blob{blue!50!gray}\\
\blob{white!50!black!75!blue} \blob{blue!25!gray}

It is also possible to specify the complement of a color or color mix with this syntax,
by putting a minus sign before the specification. The complement is the color that, if com-
bined with the original color, yields white. However, in the example below, mixing the colors
test and anti yields gray due to the fact that each of the colors in the mix consists of 50%
white. Only the extended specification in the third row (explained afterwards) allows us to
use 100% of each color, i.e., combine them.

Example

11-2-16

\usepackage{xcolor}
\colorlet{test}{yellow!90} \colorlet{anti}{-test}

\newcommand\blob[1]{\fbox{\color{#1}\rule{1.5cm}{5mm}}}
\blob{test} \blob{anti} \\
\blob{test!50!anti} \blob{gray} \\
\blob{rgb,1:test,1;anti,1}

ch-colour-xcolor.tex,v: 1.64 2007/06/13

�

�
“tlgc2” — 2007/6/15 — 15:39 — page 746 — #34

�

�

�

�

�

�

746 THE WORLD OF COLOR

To draw attention to individual rows of a table, we can put a band of color behind them
(Color Plate XVI e):

Table title

Description Column 1 Column 2

Row one mmmmm mmmm
Row two mmmm mmm
Row three mmmmm mmmmm
Row four mmmmm mmmm
Totals mmmmm mmmmm

\usepackage{colortbl}

\newcommand\panel[1]{\multicolumn{1}%
{>{\columncolor{magenta}}#1}}

\begin{tabular}{lrr}
\large\textbf{Table title}\\[2mm]
\textbf{Description}

& \textbf{Column 1}
& \textbf{Column 2}\\[1mm]

Row one & mmmmm & mmmm \\
Row two & mmmm & mmm \\
\panel{l}{Row three}

& \panel{r}{mmmmm}
& \panel{r}{mmmmm} \\

Row four& mmmmm & mmmm \\ \cline{2-3}
Totals & mmmmm & mmmmm

\end{tabular}
Example

11-3-13

But we can do even better: color the whole table, and leave the row to be emphasized
with a white background (Color Plate XVI f):

Table title

Description Column 1 Column 2

Row one mmmmm mmmm
Row two mmmm mmm
Row three mmmmm mmmmm
Row four mmmmm mmmm
Totals mmmmm mmmmm

\usepackage{colortbl}

\newcommand\panel[1]{\multicolumn{1}%
{>{\columncolor{white}}#1}}

\colorbox{magenta}{%
\arrayrulecolor{black}
\begin{tabular}{lrr}
\large\textbf{Table title}\\[2mm]
\textbf{Description}

& \textbf{Column 1}
& \textbf{Column 2}\\[1mm]

Row one & mmmmm & mmmm \\
Row two & mmmm & mmm \\
\panel{l}{Row three}

& \panel{r}{mmmmm}
& \panel{r}{mmmmm} \\

Row four& mmmmm & mmmm \\ \cline{2-3}
Totals & mmmmm & mmmmm

\end{tabular}}
Example

11-3-14

This is completely analogous to the previous example except that the \columncolor com-
mand now uses the color white, while the \colorbox at the beginning makes the whole
table magenta.

ch-colour-xcolorexalt.tex,v: 1.11 2007/06/05

�

�
“tlgc2” — 2007/6/15 — 15:39 — page 747 — #35

�

�

�

�

�

�

11.3 Coloring tables 747

Now we look at ways to highlight columns rather than rows. We use the\columncolor
command to specify the color of the columns (Color Plate XVI g):

Example

11-3-15

Table title

Description Column 1 Column 2

Row one mmmmm mmmm
Row two mmmm mmm
Row three mmmmm mmmmm
Row four mmmmm mmmm
Totals mmmmm mmmmm

\usepackage{colortbl}
\definecolor{Bluec}{cmyk}{.60,0,0,0}

\begin{tabular}{l>{\columncolor{Bluec}}rr}
\large\textbf{Table title}\\[2mm]
\textbf{Description} & \textbf{Column 1}

& \textbf{Column 2} \\[1mm]
Row one & mmmmm & mmmm \\
Row two & mmmm & mmm \\
Row three& mmmmm & mmmmm \\
Row four & mmmmm & mmmm \\
Totals & mmmmm & mmmmm
\end{tabular}

Colored panels of this type are often used to highlight connected regions in a table. The blue
shade (Bluec) is defined at the beginning with the standard \definecolor command,
although we could also have combined it with \columncolor as

\columncolor[cmyk]{.60,0,0,0}

Another feature often encountered in color work is the color gradient (Color
Plate XVI h). Here we use various levels of cyan defined at the start for successive rows. We
use the extended mixing possibilities of xcolor to achieve this effect:

Example

11-3-16

Table title

Description Column 1 Column 2

Row one mmmmm mmmm
Row two mmmm mmm
Row three mmmmm mmmmm
Row four mmmmm mmmm
Totals mmmmm mmmmm

\usepackage[table]{xcolor}
\definecolor{Cyan}{cmyk}{1,0,0,0.3}

\begin{tabular}{l rr}
\rowcolor{Cyan}\multicolumn{3}{l}

{\large\textbf{\strut Table title}}\\[2mm]
\rowcolor{Cyan}
\textbf{Description} & \textbf{Column 1}

& \textbf{Column 2} \\[1mm]
\rowcolor{Cyan!20}Row one & mmmmm & mmmm \\
\rowcolor{Cyan!40}Row two & mmmm & mmm \\
\rowcolor{Cyan!60}Row three& mmmmm & mmmmm\\
\rowcolor{Cyan!80}Row four & mmmmm & mmmm \\
\rowcolor{Cyan} Totals & mmmmm & mmmmm
\end{tabular}

Although this task requires specifying colors for each row, the result can be quite pleas-
ing. This technique is certainly one of those most often used to produce attractive and easily
readable tabular material.

One might expect to be able to achieve the same effect by defining a color series and
stepping it through each row. However, as it turns out, this approach results in the color
changing for every cell: due to the implementation, the color expression is evaluated each

ch-colour-xcolorexalt.tex,v: 1.11 2007/06/05

�

�
“tlgc2” — 2007/6/15 — 15:39 — page 754 — #42

�

�

�

�

�

�

754 THE WORLD OF COLOR

11.4.2 Your first slides
The beamer class comes with lengthy documentation, example files, and a lot of ready-made
templates for different colors and layouts. The following example shows the default output. It
is difficult to choose the right layout for the presentation—when people are more impressed
by the fancy layout than by the contents, then there is something wrong! For a first-time user,
it is sensible to use some of the predefined themes of beamer, and to attempt to write your
own only after gaining some experience with this class.

Let us start with a simple pair of slides:

The Declaration of Independence of the Thirteen
Colonies.

by Thomas Jefferson et al.

July 4, 1776

Self-evident truths.

We hold these truths to be self-evident,
� that all men are created equal,
� that they are endowed by their Creator with certain

inalienable rights,
� that among these are Life, Liberty and the Pursuit of

Happiness.
� That, to secure these rights, Governments are instituted

among Men, deriving their just powers from the consent of
the governed.

� That, when any form of government becomes destructive of
these ends, it is the Right of the People to alter or abolish it.

\documentclass{beamer}

\title{The Declaration of Independence of
the Thirteen Colonies.}

\author{by Thomas Jefferson et al.}
\date{July 4, 1776}
\frame{\maketitle}

\section{The unanimous Declaration}
\begin{frame}
\frametitle{Self-evident truths.}
We hold these truths to be self-evident,
\begin{itemize}
\item \textbf{that} all men are created equal,
\item \textbf{that} they are endowed by their

Creator with certain inalienable rights,
\item \textbf{that} among these are Life,

Liberty and the Pursuit of Happiness.
\item \textbf{That}, to secure these rights,
Governments are instituted among Men, deriving
their just powers from the consent of the governed.
\item \textbf{That}, when any form of government
becomes destructive of these ends, it is the Right
of the People to alter or abolish it.
\end{itemize}
\end{frame}

Example

11-4-1

We can change appearance of the slides by choosing variants in five style levels for
beamer: the theme, the outer layout, the inner layout, the color theme, and the font theme.
In each case you can use the standard LATEX \usepackage mechanism by preceding
the style name with the word beamertheme,beameroutertheme,beamerinnertheme,
beamercolortheme, or beamerfonttheme respectively.

Table 11.4 lists the predefined styles that come with beamer. These themes are not offi-
cial, and their contents and layout depend on what users have contributed to the community.

In the next step we choose the Malmoe main theme; this is just a name for the theme
and not the official layout of the Swedish university!

ch-colour-beamer.tex,v: 1.89 2007/06/13

�

�
“tlgc2” — 2007/6/15 — 15:39 — page 765 — #53

�

�

�

�

�

�

11.4 Color slides with LATEX — The beamer class 765

the end of the last column, the use of \onslidewithout a specification ensures that the first
column on the next row is once more shown normally, so that the whole first column is seen
(the last slide is also shown in Color Plate XVI x).

Example

11-4-11

Reveal a table
row by row

Uncover a
table
columnwise

Uncover a
table rowwise
II

Reveal rows and columns in a table
Using the onslide macro

package
pstricks.tex
pst-3d.tex
pst-char.tex
pst-coil.tex
pst-eps.tex
pst-fill.tex
pst-grad.tex
pst-xkey.tex
pst-node.tex
pst-plot.tex
pst-text.tex
pst-tree.tex

Reveal a table
row by row

Uncover a
table
columnwise

Uncover a
table rowwise
II

Reveal rows and columns in a table
Using the onslide macro

package date
pstricks.tex 2004
pst-3d.tex 1999
pst-char.tex 1999
pst-coil.tex 1999
pst-eps.tex 1999
pst-fill.tex 2004
pst-grad.tex 2004
pst-xkey.tex 2005
pst-node.tex 2001
pst-plot.tex 2000
pst-text.tex 1999
pst-tree.tex 2004

Reveal a table
row by row

Uncover a
table
columnwise

Uncover a
table rowwise
II

Reveal rows and columns in a table
Using the onslide macro

package date function
pstricks.tex 2004 basic package
pst-3d.tex 1999 basic 3-D macros
pst-char.tex 1999 character manipulation
pst-coil.tex 1999 coils and zig zags
pst-eps.tex 1999 EPS export
pst-fill.tex 2004 filling and tiling
pst-grad.tex 2004 color gradients
pst-xkey.tex 2005 key setting
pst-node.tex 2001 nodes and connections
pst-plot.tex 2000 plotting functions
pst-text.tex 1999 text manipulations
pst-tree.tex 2004 trees

\documentclass[xcolor=table]{beamer}
\usetheme{Malmoe}
\useoutertheme{sidebar}
\usecolortheme{dove}
\newcommand\bfrm[1]

{\textbf{\textrm{\textcolor{white}{#1}}}}

\section{Reveal a table row by row}
\begin{frame}

\frametitle{Reveal rows and columns in a table}
\framesubtitle{Using the pause macro}
...

\end{frame}
\section{Uncover a table columnwise}
\begin{frame}
\frametitle{Reveal rows and columns in a table}
\framesubtitle{Using the onslide macro}
\rowcolors[]{1}{blue!40}{yellow!20}
\begin{tabular}{>{\ttfamily}l<{\onslide<2->}|%
>{\ttfamily}l<{\onslide<3->}l<{\onslide}@{}}

\rowcolor{gray}
\bfrm{package}&\bfrm{date}&\bfrm{function} \\
pstricks.tex & 2004 & basic package \\
pst-3d.tex & 1999 & basic 3-D macros \\
pst-char.tex & 1999 & character manipulation\\
pst-coil.tex & 1999 & coils and zig zags \\
pst-eps.tex & 1999 & EPS export \\
pst-fill.tex & 2004 & filling and tiling \\

... further code omitted ...

\onslide can also be used to show specific rows of a table, as we saw earlier with
\pause. The following example shows the third and fifth slides of the frame. Note that in
the example the \onslide commands are added at the end of the rows (affecting the next)
and not at the beginning, as that would trigger the coloring of the row.

\documentclass[xcolor=table]{beamer}
\usetheme{Malmoe} \useoutertheme{sidebar} \usecolortheme{dove}
\newcommand\bfrm[1]{\textbf{\textrm{\textcolor{white}{#1}}}}
\section{Reveal a table row by row} \begin{frame} ... \end{frame}
\section{Uncover a table columnwise} \begin{frame} ... \end{frame}
\section{Uncover a table rowwise II}
\begin{frame}
\frametitle{Reveal rows and columns in a table}

ch-colour-beamer.tex,v: 1.89 2007/06/13

�

�
“tlgc2” — 2007/6/15 — 15:39 — page 792 — #80

�

�

�

�

�

�

792 THE WORLD OF COLOR

\includegraphics<overlay spec.> [key/vals] {file name}
\pgfdeclareimage{key/vals}{beamer name }{file name}
\pgfuseimage{key/vals}{beamer name}

The following example shows both ways of using a graphic. The screenshot is the thirteenth
slide, which is easy to control because each line has five pictures. The automatic slide control
is done by the option <+-> together with the \only and \includegraphicsmacros.

A demonstration of using a graphic
includegraphics and pgfuseimage

\documentclass{beamer} \usetheme{Malmoe}
\useoutertheme{sidebar} \usecolortheme{dove}
\pgfdeclareimage[width=2cm]{fu}{fu-berlin}
\newcommand\FU{\only<+->{\pgfuseimage{fu}}}
\newcommand\fu

{\includegraphics<+->[width=2cm]{fu-berlin}}
\logo{\includegraphics[width=1.5cm]{fu-berlin}}

\begin{frame}
\frametitle{A demonstration of using a graphic}
\framesubtitle{includegraphics and pgfuseimage}
\FU \fu \FU \fu \FU\par \fu \FU \fu \FU \fu\par
\FU \fu \FU \fu \FU
\end{frame}

Example

11-4-34

Often a full-screen graphic is needed, which is possible with an empty frame (keyword
plain) and filling the background canvas with the graphic.

\documentclass{beamer} \usetheme{Malmoe}
\useoutertheme{sidebar} \usecolortheme{dove}

\setbeamertemplate{background canvas}{%
\includegraphics[width=\paperwidth]%

{fu-berlin-air}}
\begin{frame}[plain]
\end{frame}

Example

11-4-35

This image shows the main campus of the Free University of Berlin and is courtesy of
Foster & Partners.

11.4.8 Managing your templates
The beamer class is totally driven by templates, and nearly everything can be overwritten or
simply defined by the user. In general there are three kinds of templates:

ch-colour-beamer.tex,v: 1.89 2007/06/13

	Seiten aus lgc2-ch0-print1.pdf
	Seiten aus lgc2-ch1-print1.pdf
	Seiten aus lgc2-ch2-print1.pdf
	Seiten aus lgc2-ch3-print1.pdf
	Seiten aus lgc2-ch4-print1.pdf
	Seiten aus lgc2-ch5-print1.pdf
	Seiten aus lgc2-ch6-a-print1.pdf
	Seiten aus lgc2-ch6-c-print1.pdf
	Seiten aus lgc2-ch6-g-print1.pdf
	Seiten aus lgc2-ch7-print1.pdf
	Seiten aus lgc2-ch8-print1.pdf
	Seiten aus lgc2-ch9-print1.pdf
	Seiten aus lgc2-ch10-print1.pdf
	Seiten aus lgc2-ch11-print1.pdf
	Seiten aus lgc2-ch11-print1-2.pdf

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX3:2002
]
 /PDFX1aCheck false
 /PDFX3Check true
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (ISO Coated)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition (Bei Bedarf bitte eingeben)
 /PDFXRegistryName (www.cleverprinting.de)
 /PDFXTrapped /False

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF00540068006500730065002000610072006500200068006900670068002d0065006e00640020006f00750074007000750074002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046007300200077006800690063006800200063006f006e0066006f0072006d00200074006f002000740068006500200053002600470020005000720069006e0074002000470072006f00750070002e00200054006800650079002000610072006500200061006c0073006f00200076006500720079002000730069006d0069006c0061007200200074006f0020007400680065002000490053004f0020005000440046002f0058002d003100610020007300740061006e006400610072006400200066006f007200200067006c006f00620061006c00200062006c0069006e0064002000650078006300680061006e006700650020006f006600200074006800650020005000440046002000660069006c006500200066006f0072006d0061007400200066006f00720020007000720069006e0074002e>
 /DEU <FEFF005000440046002f0058002d0033002000450069006e007300740065006c006c0075006e00670065006e002000650072007300740065006c006c007400200061006d002000320037002e0020004d006100690020003200300030003400200076006f006e00200043002e0020005000690073006b0075006c006c0061000d007700770077002e0063006c0065007600650072007000720069006e00740069006e0067002e00640065002c00200045006d00610069006c003a0020007000690073006b0075006c006c006100400063006c0065007600650072007000720069006e00740069006e0067002e00640065000d000d007500700064006100740065007300200066006f00720020006100630072006f006200610074002000370020002b0020004c00610054006500580020002d003e002000640076006900700073002000700072006f00630065007300730069006e0067002000280046004d006900200032003000300035002f00300035002f003300300029>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (Adobe RGB \0501998\051)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.3
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages false
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends false
 /DetectCurves 0.1000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (Color Management Off)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 2400
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX3:2002
]
 /PDFX1aCheck false
 /PDFX3Check true
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError false
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (ISO Coated)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition (Bei Bedarf bitte eingeben)
 /PDFXRegistryName (www.cleverprinting.de)
 /PDFXTrapped /False

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /ENU <FEFF00540068006500730065002000610072006500200068006900670068002d0065006e00640020006f00750074007000750074002000730065007400740069006e0067007300200066006f00720020006300720065006100740069006e00670020005000440046007300200077006800690063006800200063006f006e0066006f0072006d00200074006f002000740068006500200053002600470020005000720069006e0074002000470072006f00750070002e00200054006800650079002000610072006500200061006c0073006f00200076006500720079002000730069006d0069006c0061007200200074006f0020007400680065002000490053004f0020005000440046002f0058002d003100610020007300740061006e006400610072006400200066006f007200200067006c006f00620061006c00200062006c0069006e0064002000650078006300680061006e006700650020006f006600200074006800650020005000440046002000660069006c006500200066006f0072006d0061007400200066006f00720020007000720069006e0074002e>
 /DEU <FEFF005000440046002f0058002d0033002000450069006e007300740065006c006c0075006e00670065006e002000650072007300740065006c006c007400200061006d002000320037002e0020004d006100690020003200300030003400200076006f006e00200043002e0020005000690073006b0075006c006c0061000d007700770077002e0063006c0065007600650072007000720069006e00740069006e0067002e00640065002c00200045006d00610069006c003a0020007000690073006b0075006c006c006100400063006c0065007600650072007000720069006e00740069006e0067002e00640065000d000d007500700064006100740065007300200066006f00720020006100630072006f006200610074002000370020002b0020004c00610054006500580020002d003e002000640076006900700073002000700072006f00630065007300730069006e0067002000280046004d006900200032003000300035002f00300035002f003300300029>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

