
LATEX3 News
Issue 8, July 2012

Extended floating point support

Bruno Le Floch has been re-writing the floating point
module to function in an ‘expandable’ manner. This
allows floating point calculations to be computed
far more flexibly and efficiently than before. The ex-
pandable nature of the new code allows its use inside
operations such as writing to external files, for which
previously any such calculations would have to be pre-
calculated before any of the writing operations began.

Bruno’s work on the floating point module has
been officially released into the main svn repository for
l3kernel; TEX Live 2012 will contain the ‘old’ code for
stability while this year is spent testing the new code in
production environments and ironing out any wrinkles.

Here’s a neat example as suggested in the documen-
tation, which produces ‘6.2784 × 102’:

\usepackage{xparse, siunitx}

\ExplSyntaxOn

\NewDocumentCommand { \calcnum } { m }

{ \num { \fp_to_scientific:n {#1} } }

\ExplSyntaxOff

\calcnum {

round (200 pi * sin (2.3 ^ 5) , 2)

}

This feature is invaluable for simple (and not-so-
simple) calculations in document and package au-
thoring, and has been lacking a robust solution for
many years. While LuaLATEX can perform similar tasks
within its Lua environment, the floating point support
is written using the expl3 programming language only,
and is thus available in pdfLATEX and X ELATEX as well.

Regular expressions in TEX

As if expandable floating point support wasn’t enough,
Bruno has also written a complete regular expression
engine in expl3 as well. Many reading this will be
familiar with the quote attributed to Jamie Zawinski:

Some people, when confronted with a problem,
think “I know, I’ll use regular expressions.”
Now they have two problems.

And as humorous as the saying is, it’s still fair to say
that regular expressions are a great tool for manipulat-
ing streams of text. We desperately hope that people
will not start using the regex code to do things like

parse xml documents; however, for general search–
replace duties, there’s never been anything like l3regex

for the LATEX world. As a trivial example, there are
23 instances of the word ‘We’ or ‘we’ in this document
(including those two). This value is counted automati-
cally in two lines of code.

And again, it is available for pdfLATEX and X ELATEX
users as well as LuaLATEX ones; it also bears noting
that this provides an easy solution for applying regular
expression processing to LATEX documents and text
data even on the Windows operating system that does
not have native support for such things.

Separating internal and external code

LATEX packages are written by a wide range of package
authors and consist of code and commands for various
purposes. Some of these commands will be intended for
use by document authors (such as \pbox from the pbox
package); others are intended for use by other package
writers (such as \@ifmtarg from the ifmtarg package).

However, a large portion of them are internal,
i.e., are intended to be used only within the package
or within the LATEX kernel and should not be used
elsewhere. For example, \@float is the LATEX kernel
interface for floats to be used in class files, but the ac-
tual work is done by a command called \@xfloat which
should not be used directly. Unfortunately the LATEX 2ε
language makes no clear distinction between the two,
so it is tempting for programmers to directly call the
latter to save some “unnecessary” parsing activity.

The downside of this is that the “internal” com-
mands suddenly act as interfaces and a reimplemen-
tation or fix in any of them would then break add-on
packages as they rely on internal behavior. Over the
course of the last twenty years probably 80% of such
“internal” commands have found their way into one
or another package. The consequences of this is that
nowadays it is next to impossible to change anything in
the LATEX 2ε kernel (even if it is clearly just an internal
command) without breaking something.

In LATEX3 we hope to improve this situation dras-
tically by clearly separating public interfaces (that
extension packages can use and rely on) and private
functions and variables (that should not appear outside
of their module). There is (nearly) no way to enforce
this without severe computing overhead, so we imple-
ment it only through a naming convention, and some

LATEX3 News, and the LATEX software, are brought to you by the LATEX3 Project Team; Copyright 2012, all rights reserved.

support mechanisms. However, we think that this nam-
ing convention is easy to understand and to follow, so
that we are confident that this will be adopted and
provides the desired results.

Naming convention for internals

We’ve been throwing around some ideas for this for a
number of years but nothing quite fit; the issue comes
down to the fact that TEX does not have a ‘name-
spacing’ mechanism so any internal command needs to
have a specific prefix to avoid clashing with other pack-
ages’ commands. The prefix we have finally decided
on for expl3 code is a double underscore, such that
functions like \seq_count:N are intended for external
use and __seq_item:n is an internal command that
should not be used or relied upon by others.

All this is well and good, but it can be inconvenient
to type long prefixes such as __seq_ before all com-
mand names, especially in a package for which nearly
all package functions are internal.

We therefore also extended DocStrip slightly by
adding a ‘shorthand’ for internal package prefixes.
Commands and variables in .dtx code may now con-
tain @@ which is expanded to the function prefix when
the .sty file is extracted. As an example, writing

%<@@=seq>

\cs_new:Npn \@@_item:n

...

is equivalent to

\cs_new:Npn __seq_item:n

...

There are clear advantages to this syntax. Function
names are shorter and therefore easier to type, and
code can still be prototyped using the @@ syntax (e.g.,
pasting code between a .dtx file and a regular .tex
document). Most importantly, it is explicitly clear from
the code source which commands are intended to be
used externally and which should be avoided.

We hope that this syntax will prove popular; in our
initial experiments we think it works very well. In fact
we found a good number of smaller errors when being
forced to think about what is internal and what is an
external function.

Continual revolution—the ‘small bang’

In addition to the major additions introduced above,
Frank Mittelbach has been examining expl3 with a
fresh eye to resolve any outstanding issues in the con-
sistency or logic of the names of functions.

We are very mindful of the fact that for people to
find expl3 a useful tool, it must have a stable inter-
face. This said, there are still some musty corners that

we can show where people simply haven’t been using
certain functions. In select cases, we’re re-assessing
whether all of the (sometimes esoteric) odds and ends
that have been added to expl3 really belong; in other
cases, it’s now clear that some naming or behaviour
choices weren’t correct the first time around.

To address this tarnish, we’re carefully making some
minor changes to parts of the expl3 interface and we’d
like to allay any fears that expl3 isn’t stable. The
expl3 language now offers a wide range of functions
plus their variants, and we’re talking about changing
but a very small percentage of these, and not common
ones at that. We don’t want it to become a mess, so we
think it’s better to tidy things up as we go. Follow the
LaTeX-L mailing list for such details as they arise.

	Extended floating point support
	Regular expressions in TeX
	Separating internal and external code
	Naming convention for internals

	Continual revolution—the `small bang'

