
170 TUGboat, Volume 42 (2021), No. 2

On the road to Tagged PDF:
About StructElem, Marked Content,
PDF/A and Squeezed Bärs

Ulrike Fischer

Abstract

In this article I present two packages as part of the
LATEX Project’s “Tagged PDF” effort:
tagpdf which contains the core code to create a

tagged PDF and is used by the LATEX team to
test new code.

pdfmanagement-testphase which contains a large
number of PDF-related commands and tools and
installs a new management command for central
PDF dictionaries.

I will show how to use these packages and the bene-
fits they will bring for the average user, while also
mentioning resulting incompatibilities and required
changes in documents.

1 Introduction

At its core, PDF is a page and graphic-related for-
mat: it allows describing, very accurately, a page
layout, the font sizes, font types, colors, placement
of characters and graphical elements, but essentially
it simply says where to put ink on the page. It is
possible to extract text but one doesn’t get the se-
mantic meaning of such a text, the reading order can
be unclear, and—with PDF produced by TEX—it
can even be unclear where words begin and end.

However, PDF is also quite an extensible for-
mat. In the same way you can enhance HTML with
Cascading Style Sheets (CSS) and JavaScript, you
can enhance PDF in various ways: you can embed
files with source code or other material, you can add
alternative text to objects. And, most importantly
for our purposes, you can tag it: with this you are
adding a structural layer over the content (figure 1).

2 Some technical details

In the PDF format, every page is stored in a page
stream. This stream contains various operators which
select fonts, move around on the page, and insert
images and text.

As described in a previous article [1], tagging
requires first the writing of markers called Marked
Content (MC) markers into the page stream which
label and number all chunks of meaningful content.

The next step is to add various objects to the
PDF. These objects contain references to each other
as parent and kid objects and so form a tree. The
numbered Marked Content chunks are leaf nodes
in this tree. Figure 2 shows a simple tree created

layout
control

PDF HTML

structure
meaning

goo
d

structure info with

lots of taggingOK

layout control with
lots of CSS
OK

goo
d

Figure 1: PDF vs. HTML, layout vs. structure

root (obj 1)

document (obj 4)

section (obj 5)

MCID 0

paragraph (obj 6)

MCID 1

Figure 2: Simple structure tree

with such objects. The last step is to create various
objects for cross-referencing and housekeeping, and
to register them in the catalog so that a PDF viewer
can find and use the structure.

3 Inspecting a tagged PDF

Checking the tags of a PDF can be done with Adobe
Acrobat Pro; some free options are also slowly appear-
ing. One of them is the online editor at ngpdf.com.
It allows you to upload a tagged PDF, view the tag
structure and view and also export an HTML repre-
sentation of the PDF. If the math has an embedded
associated file with the MathML representation, then
the HTML will use MathJax to render it.

Unlike the copy&paste heuristic of PDF view-
ers, the site doesn’t try to guess the reading order
but shows you what you get from the tags and the
structure tree. The HTML export demonstrates that
tagging isn’t only for screen readers. It gives you
more options to reuse the PDF. The old saying that
PDF is like scrambled eggs and that you can’t get
back an egg (a structured LATEX document) from it
is no longer true: You still don’t get all the details
back, but depending on the amount of tagging that’s
been added, you can restore quite a lot.

4 Amount of tagging:
About (im-)perfection and standards

A document must be tagged in its entirety. You can’t
tag only a specific section or some table or some math

doi.org/10.47397/tb/42-2/tb131fischer-tagpdf

Ulrike Fischer

https://ngpdf.com
https://doi.org/10.47397/tb/42-2/tb131fischer-tagpdf

TUGboat, Volume 42 (2021), No. 2 171

to improve its export or copy & paste, even if the rest
of the document already works satisfactorily.

But this still leaves you with quite a lot of free-
dom about the amount of tagging. If a paragraph
contains some emphasized text you can tag it as an
Em-structure, but you don’t have to. This naturally
means that some information will be lost, but quite
apart from the fact that is often impossible anyway
to mirror the intention of every detail of a layout
into such a structure tree, tagging doesn’t have to be
perfect to be useful; it improves accessibility signifi-
cantly even if merely headings are tagged for better
navigation and paragraphs are shown in the correct
reading order.

The same goes for standards: There exist various
guides and standards which describe requirements
for accessible and well-tagged PDF documents. They
and the validators checking such standards are useful
to set goals which we should aim to reach, but that
it is often not (yet) possible to fulfill all aspects of
such a standard should not stop you from creating
more usable documents.

The end users of the documents we produce are
not validators but intelligent humans, and intelligent
humans can often handle imperfect documents sur-
prisingly well, and in the end, their feedback is what
will really matter.

5 Tagging with the tagpdf package

I wrote the tagpdf package (ctan.org/pkg/tagpdf)
around four years ago. At that time I was already
convinced that tagging at a reasonable scale can’t
be done in an external package, but that changes
would be required in LATEX itself. If we want a large
number of documents to be tagged, “normal” tagging
shouldn’t need expert skills and fragile patches but
should be supported by LATEX directly.

So the goals of tagpdf were

• to develop the basic tagging code for the kernel,
• to provide examples and tests,
• to identify LATEX problems, and
• to develop stable solutions which can be eventu-

ally integrated into LATEX.

This means that tagpdf wasn’t written as a
standard user package, but rather primarily as a
research and development tool and will eventually
vanish again. As such

• it requires the newest LATEX code, sometimes
even LATEX-dev,

• it can still change,
• it concentrates on basic commands, and
• it doesn’t patch other packages.

Listing 1: Tagging commands

\tagstructbegin{tag=P}%
\tagmcbegin{tag=P}...text...\tagmcend
\tagstructbegin{tag=Link}
\tagmcbegin{tag=Link}...text...\tagmcend
\tagstructend
\tagmcbegin{tag=P}...text...\tagmcend
%pagebreak: new mc-chunk
\tagmcbegin{tag=P}...text...\tagmcend

\tagstructend

tagpdf defines a number of commands, but the
two core command pairs are these: First, the com-
mands to mark the MC-chunks. As they split the text
into small labeled chunks these commands should be
used linearly: \tagmcbegin ... \tagmcend.

Secondly, there are the commands to mark the
structure. They are typically nested:
\tagstructbegin ... \tagstructend.

Listing 1 shows a simple example of their use. It
is important to note that if there is a page break in
the middle of a text chunk, the MC-marker must be
closed before the break and reopened after the break.
This is easy to do manually but rather challenging
if it has to be done automatically, at least with
other engines than LuaLATEX. Frank Mittelbach’s
companion talk discusses this.

Listing 2 shows the source code of a small but
complete document using tagpdf. In general, tag-
ging works best with LuaLATEX. To use other engines,
you need the code mentioned in Frank’s talk, or mark
up all page breaks manually. Neither LATEX & dvips
nor X ELATEX support real space characters.

There are a few important points to note here:
• The document should be compiled twice, some-

times more. Be aware that you don’t necessarily
get a rerun message yet, even if one is needed.

• tagpdf requires the pdfmanagement-testphase
package. I will say more about this below.

• tagpdf is still a normal package and can be
loaded with \usepackage, but as a first step
towards full integration into LATEX itself it can
also be loaded with the testphase key.

• Tagging must be activated explicitly. This can
be done as in the example with the activate
key, and also with the \tagpdfsetup command
from the package (see the documentation).

• The example shows lots of tagging commands
around the section, but none at all around the
paragraph or the link.
This last point reflects the state of the project:

With the help of the work done over the last months

On the road to Tagged PDF: About StructElem, Marked Content, PDF/A and Squeezed Bärs

https://ctan.org/pkg/tagpdf

172 TUGboat, Volume 42 (2021), No. 2

Listing 2: A full example

\RequirePackage{pdfmanagement-testphase}
\DeclareDocumentMetadata{pdfversion=2.0,

testphase={tagpdf}, activate=tagging}
\documentclass{article}
\usepackage{hyperref}
\pagestyle{empty}
\begin{document}
\tagpdfparaOff
\tagstructbegin{tag=H1}\tagmcbegin{tag=H1}
\section{A section}
\tagmcend\tagstructend\tagpdfparaOn

A paragraph with some text and a link to
\url{https://www.latex-project.org}

Another paragraph \ldots
\end{document}

on the new paragraph hooks and PDF management,
paragraphs and links can be automatically tagged,
but sectioning commands still need either manual
tagging or patches. It will be the next task to auto-
mate this too, which will require some months’ work.
You may wonder why it takes so long to insert what
amounts to two lines of code. The first reason is that
the code must be added to commands which are used,
patched and redefined by many classes and packages.
If we simply change them to support tagging, this
would break these classes and packages. So we need
a proper change strategy here. The second reason is
that as we are obliged to change the sectioning com-
mands, we want to use the opportunity to modernize
and improve them.

6 PDF management

Tagging writes many objects and other code into
the PDF. This requires proper tools. “Proper tools”
means, above all, abstracted, backend-independent
tools provided directly by LATEX. When I started
with tagpdf there was nearly nothing available. You
either had to use some external package or a prim-
itive command. By now the situation has changed
dramatically, and for the better: The LATEX format
now includes the L3 programming layer (expl3) code
and loads backend files from l3backend. This means
that even in small documents, commands to write
PDF objects, to set the PDF version, and to use
colors are available.

The new PDF management support, currently
in the external package pdfmanagement-testphase,
extends this set of tools. It offers commands to
write the MC-markers, to embed files (needed to

add associated files to a structure), to create links
which have suitable hooks for the automatic tagging,
commands to create form fields with built-in tagging
support, and more.

But the PDF management does more: In a
PDF there are a number of central dictionaries to
which packages shouldn’t write directly, to avoid
clashes with other packages. Until now, packages
had no way to avoid such problems apart from test-
ing for potentially problematic packages, but the
new PDF management will resolve this problem: It
offers a command which allows to write to the dic-
tionaries in a managed way. The command exists
in two versions, for LATEX2ε code and for expl3 code:
\PDFManagementAdd and \pdfmanagement_add:nnn,
respectively, which together we’ll call pdfmanagement
for short. Details on how to use the command can
be found in the documentation l3pdfmanagement.

6.1 Incompatibilities

This new pdfmanagement support replaces the five
primitives \pdfinfo, \pdfcatalog, \pdfpageattr,
\pdfpagesattr and \pdfpageresources and the
analogous commands of the other engines and back-
ends. Replace truly means replace here: every pack-
age which uses those primitives is incompatible with
the new pdfmanagement. For this reason we built a
safety net around its use:

• The code has not been added directly to the ker-
nel, but is offered now as an external testphase
package.

• For the central management command, there is
an explicit activation trigger command:
\DeclareDocumentMetadata.

• We already wrote a number of replacements for
incompatible packages and drivers, for example
hyperref, transparent, pdflscape.

• We wrote a number of “firstaid” patches for
packages which will stay until the packages adapt
their code, e.g., pgf and hyperxmp.

• We notified various package and class maintain-
ers and asked them to adjust their code.
But we can see problems only with packages

that are on CTAN and in the TEX distributions. For
the various house classes and packages of universities
and journals we need the help of users to report
problems. So please test and check!

6.2 Benefits

The new pdfmanagement is not only good for tagging.
The rewriting and checking of PDF related code and
packages was also used to modernize, correct and
extend various other features. I would like to mention
a few improvements.

Ulrike Fischer

TUGboat, Volume 42 (2021), No. 2 173

Listing 3: New hyperref options

\hypersetup{href/protocol=https://,
href/urlencode}

\hrefurl{www.köln.de}{Köln}
\url[format=\textsc]{www.köln.de}

Listing 4: Rotating of float pages

\begin{figure}[p]
\PDFManagementAdd{ThisPage}{Rotate}{90}
... landscape picture ...
\end{figure}

6.2.1 Colors and link options for hyperref

When the new pdfmanagement is used, hyperref
(ctan.org/pkg/hyperref) uses a new, generic driver.
This driver uses better default colors, has keys to
change to other color schemes, and styles like linkcol-
ors can now be changed at any time in the document.
The support for non-ASCII links has been extended:
links can be input in UTF-8 and hyperref will con-
vert them internally into the needed “percent” encod-
ing. It is possible to preset a protocol, most likely
https://, which is then prefixed to all links. There
is also a hook system which allows packages to add
support to differentiate internal links by concepts
such as citation, acronym, glossary and similar. See
listing 3.

6.2.2 Rotations of float pages

With the pdfmanagement command it is possible
to rotate float pages; depending on the engine this
requires one or two compilations. See listing 4.

6.2.3 Support for PDF standards

The pdfmanagement bundle also contains a module
for PDF standards. Currently it mostly handles A-
standards. When such a standard is requested the
code will, for example, include a color profile and
register it in the PDF catalog. It will also enable
verification tests that other packages can use in their
code; for example, the new hyperref driver uses
this to suppress JavaScript actions. This replaces
the key pdfa which is no longer used by the new
driver. XMP-metadata can be added by loading the
hyperxmp package (ctan.org/pkg/hyperxmp). See
listing 5.

6.2.4 Preserving links

As part of the work, a modernized version of the pax
package (ctan.org/pkg/pax) from Heiko Oberdiek
has been written. The new package is called newpax

Listing 5: Specifying a PDF standard

\RequirePackage{pdfmanagement-testphase}
\DeclareDocumentMetadata{pdfstandard=A-2b}
\documentclass{article}
\usepackage{hyperxmp}
\usepackage{hyperref}
....

(ctan.org/pkg/newpax), and it supports including
PDFs inside another PDF without losing the links. It
works with more backends and engines and, unlike
pax, it doesn’t require an external Java application,
instead using LuaTEX.

6.2.5 New form field code

Finally I would like to mention the code for form
fields, which has been completely rewritten.

The new code is currently in a testphase package
called l3pdffield-testphase, which is part of the
pdfmanagement-testphase bundle. It is not yet
decided if it will be part of hyperref like the old
code or stay in a separate package.

One important change in this code is that it has
been adapted to PDF 2.0. This means that it uses
“appearances” in various places for the look of the
fields (appearances are small graphics called “form
XObjects”, stored in the PDF). Using appearances
means that radio buttons or checkbox fields are no
longer restricted to characters but can contain ar-
bitrary images, e.g., animals from the tikzlings
package (ctan.org/pkg/tikzlings).

But be careful! Appearances are squeezed by
the PDF viewer into the dimensions of the form field,
and this can hurt the Bär!

Ouch

Ouch

References
[1] U. Fischer. Creating accessible pdfs with LATEX.

TUGboat 41(1):26–28, 2020. https://tug.org/
TUGboat/tb41-1/tb127fischer-accessible.pdf

⋄ Ulrike Fischer
LATEX project team
Mönchengladbach
Germany
ulrike.fischer (at)

latex-project.org

On the road to Tagged PDF: About StructElem, Marked Content, PDF/A and Squeezed Bärs

https://ctan.org/pkg/hyperref
https://ctan.org/pkg/hyperxmp
https://ctan.org/pkg/pax
https://ctan.org/pkg/newpax
https://ctan.org/pkg/tikzlings
https://tug.org/TUGboat/tb41-1/tb127fischer-accessible.pdf
https://tug.org/TUGboat/tb41-1/tb127fischer-accessible.pdf

	Introduction
	Some technical details
	Inspecting a tagged PDF
	Amount of tagging: About (im-)perfection and standards
	Tagging with the tagpdf package
	PDF management
	Incompatibilities
	Benefits
	Colors and link options for hyperref
	Rotations of float pages
	Support for PDF standards
	Preserving links
	New form field code

