Reconciling unicode-math and LATEX 2_{ε}

Will Robertson

July 20, 2015

What's unicode-math?

\usepackage\{unicode-math\}\setmathfont\{CambriaMath\}\setmathfont\{CambriaMath\}[range=\{\mathrel\},Colour=ForestGreen]\setmathfont\{CambriaMath\}[range=\{\mathopen,\mathclose\},Colour=blue]\setmathfont\{CambriaMath\}[range=\{\mathop,\mathscr\},Colour=red]undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

$$
F(s)=\mathscr\{L\}\\, \bigl\\{f(t)\bigr\\}
\(=\) \int_0^m \mathup \(e^{\wedge}\{-s t\} f(t)\)
\\, \mathup d t
$$

$$
F(s)=\mathcal{L}\{f(t)\}=\int_{0}^{\infty} \mathrm{e}^{-s t} f(t) \mathrm{d} t
$$

Introduction

LATEX defaults

Input:

$$
\backslash[\text { fin }=\text { \mathit\{fin\}
$$ }

\]

Output:

$$
f i n=f i n
$$

Introduction

With unicode-math

Input:

$$
\backslash[\text { fin }=\text { \mathit\{fin\}
$$ }

\]

Output:

$$
\text { fin }=\text { fin }
$$

Introduction

Similarly:

Input:

$$
\backslash[\text { fin }=\text { \mathbf\{fin\}
$$ }

\]

Default:

$$
\text { fin }=\mathrm{fin}
$$

With unicode-math:

$$
\text { fin }=\mathrm{fin}
$$

Something needs fixing!

Contents

Overview of Unicode Mathematics

Historical and current examples
Sidenote: symbols

TEX's methods

Unicode mathematics

- I hope you know what Unicode is
- Thousands of mathematical glyphs (≈ 2500)
- Standard LATEX names thanks to Barbara Beeton
- As a non-mathematician, very fun to scroll through seemingly endless tables like:

Extract from the symbols table

0225B	$\stackrel{\text {＊}}{ }$	$\stackrel{\text {＊}}{ }$	$\stackrel{\text {＊}}{ }$	$\stackrel{\text {＊}}{ }$	$\stackrel{\star}{*}$		\stareq
0225C	\triangleq	\triangleq	\triangleq	\triangleq	\triangleq		\triangleq ${ }^{\text {（a）}}$
0225D	$\stackrel{\text { def }}{ }$	$\stackrel{\text { def }}{ }$	$\stackrel{\text { def }}{=}$	$\stackrel{\text { def }}{ }$	$\stackrel{\text { def }}{=}$		\backslash eqdef
0225E	$\underline{\underline{m}}$	$\underline{\underline{m}}$	$\underline{\underline{m}}$	$\underline{\underline{m}}$	$\underline{\text { m }}$		\backslash measeq
0225F	$\stackrel{?}{=}$	$\stackrel{?}{=}$	$\stackrel{?}{=}$	$\stackrel{?}{ }$	$\stackrel{?}{=}$		\backslash questeq
02260	\neq	\neq	\＃	\＃	\＃	\neq	$\backslash \mathrm{n}{ }^{\text {（p）}}$
02261	三	三	三	三	三	三	\backslash equiv ${ }^{(p)}$
02262	\＃三	\＃	\＃三	\＃	\＃三	\＃	\backslash nequiv
02263	三	三	三	三	三	三	\backslash Equiv
02264	\leq	\leq	\leq	\leq	\leq	\leqslant	$\backslash \mathrm{leq}{ }^{(p)}$
02265	\geq	\geq	\geq	\geq	\geq	\geqslant	$\backslash \mathrm{geq}{ }^{(p)}$
02266	\leqq	\leqq	\leqq	\leqq	\leqq	\leqq	\backslash leqq $^{(a)}$
02267	\geqq	\geqq	\geqq	\geqq	\geqq	\geqq	$\backslash \mathrm{geqq}{ }^{(a)}$
02268	\supsetneqq	\supsetneqq	\supsetneqq	\supsetneqq	\supsetneqq	\supsetneqq	\backslash lneqq ${ }^{(a)}$

Symbols

- Access to all these symbols is nice
- All the symbols stuff is fine, \pm a few naming issues
- Standardisation should be considered more rigorously

The 'controversial' stuff

- Alphabetic symbols are encoded individually:
"00057 "1D44A "1D416 "1D51A "1D4E6 "1D54E "1D5B6
- Strong rationale: different letter shapes have different meanings in mathematics, and therefore should be distinguishable in plain text
- I.e., symbols are expressible without changing fonts
- How does this translate to LATEX?
- (This is where I went wrong.)

Alphabetic symbols

1D434	A	A	A	A	A	\backslash mitA
10435	B	B	B	B	B	\backslash mitB
1D436	C	C	C	C	C	\backslash mitc
1D437	D	D	D	D	D	\backslash mitD
10438	E	E	E	E	E	\backslash mitE
1D439	F	F	F	F	F	$\backslash \mathrm{mitF}$
1D43A	G	G	G	G	G	\backslash mitG
1043 ${ }^{\text {b }}$	H	H	H	H	H	\backslash mith
1D43C	I	I	I	I	I	\backslash mitI
1D43D	J	J	J	J	J	$\backslash \mathrm{mitJ}$
1D43E	K	K	K	K	K	\backslash mitK

Alphabetic symbols

1D700	ε	ε	ε	ε	ε	\backslash mitepsilon
1D701	ζ	ζ	ζ	ζ	ζ	\backslash mitzeta
1D702	η	η	η	η	η	\backslash miteta
1D703	θ	θ	θ	θ	θ	\backslash mittheta
1D704	ι	l	ι	ι	ι	\backslash mitiota
1D705	κ	κ	κ	κ	\mathcal{K}	\backslash mitkappa
1D706	λ	λ	λ	λ	λ	\backslash mitlambda
1D707	μ	μ	μ	μ	μ	\backslash mitmu
1D708	ν	V	v	V	ν	\backslash mitnu
1D709	ξ	ξ	ξ	ξ	ζ	\backslash mitxi
1D70A	O	O	O	0	O	\backslash mitomicron

Alphabetic symbols

1D538	D	D	D	D	D	\BbbD
1053C	E	E	E	E	\mathbb{E}	\backslash Bbbe
1D53D	F	F	F	\mathbb{F}	F	$\backslash \mathrm{BbbF}$
1D53E	\mathfrak{G}	G	\mathbb{G}	G	G	$\backslash \mathrm{BbbG}$
10540	1	\square	II	II	\square	$\backslash \mathrm{BbbI}$
10541	J	J	IJ	J	\checkmark	$\backslash \mathrm{BbbJ}$
1D542	K	$1 \times$	\mathbb{K}	\mathbb{K}	K	\BbbK
10543	[■	\mathbb{L}	\mathbb{L}	■	$\backslash \mathrm{BbbL}$
1D544	M	M	M	M	M	\BbbM
1D546	(1)	(1)	(1)	0	1	$\backslash \mathrm{Bbb0}$
1D54A	S	S	S	S	5	$\backslash \mathrm{BbbS}$

What does LATEX do with maths alphabets?

$$
\begin{gathered}
R e=\frac{\rho v \cos (\theta)}{L} \quad \text { for } 0 \leq \theta<\pi / 2 \\
H \sim \operatorname{Hom}(Z) \\
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right]^{T} \quad \mathbf{k} \in \mathbb{R}^{3}
\end{gathered}
$$

What are the different fonts here?

- ρv etc - \mathnormal
- Re - \mathit
- cos - \mathrm (actually \operator@font)
- 'for ...' - \textrm
- $(\cdot)^{T}$ or $(\cdot)^{\mathrm{T}}$ - your choice
- Hom - \mathbf
- v - \mathbf - but should it be?
- \mathbb{R} - \mathbb

What does LATEX do with maths alphabets?

$$
\begin{gathered}
R e=\frac{\rho v \cos (\theta)}{L} \quad \text { for } 0 \leq \theta<\pi / 2 \\
H \sim \operatorname{Hom}(Z) \\
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right]^{T} \quad \mathbf{k} \in \mathbb{R}^{3}
\end{gathered}
$$

What are the different fonts here?

- ρv etc - \mathnormal
- Re- \mathit
- cos - \mathrm (actually \operator@font)
- 'for ...' - \textrm
- $(\cdot)^{T}$ or $(\cdot)^{\mathrm{T}}$ - your choice
- Hom - \mathbf
- v - \mathbf - but should it be?
- \mathbb{R} - \mathbb

What does LATEX do with maths alphabets?

$$
\begin{gathered}
R e=\frac{\rho v \cos (\theta)}{L} \quad \text { for } 0 \leq \theta<\pi / 2 \\
H \sim \operatorname{Hom}(Z) \\
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right]^{T} \quad \mathbf{k} \in \mathbb{R}^{3}
\end{gathered}
$$

What are the different fonts here?

- ρv etc - \mathnormal
- Re- \mathit
- cos - \mathrm (actually \operator@font)
- 'for ...' - \textrm
- $(\cdot)^{T}$ or $(\cdot)^{\mathrm{T}}$ - your choice
- Hom - \mathbf
- v - \mathbf - but should it be?
- \mathbb{R} - \mathbb

What does LATEX do with maths alphabets?

$$
\begin{gathered}
R e=\frac{\rho v \cos (\theta)}{L} \quad \text { for } 0 \leq \theta<\pi / 2 \\
H \sim \operatorname{Hom}(Z) \\
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right]^{T} \quad \mathbf{k} \in \mathbb{R}^{3}
\end{gathered}
$$

What are the different fonts here?

- ρv etc - \mathnormal
- Re - \mathit
- cos - \mathrm (actually \operator@font)
- 'for ...' - \textrm
- $(\cdot)^{T}$ or $(\cdot)^{\mathrm{T}}$ - your choice
- Hom - \mathbf
- v - \mathbf - but should it be?
- \mathbb{R} - \mathbb

What does LATEX do with maths alphabets?

$$
\begin{gathered}
R e=\frac{\rho v \cos (\theta)}{L} \quad \text { for } 0 \leq \theta<\pi / 2 \\
H \sim \operatorname{Hom}(Z) \\
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right]^{T} \quad \mathbf{k} \in \mathbb{R}^{3}
\end{gathered}
$$

What are the different fonts here?

- ρv etc - \mathnormal
- Re - \mathit
- cos - \mathrm (actually \operator@font)
- 'for ...' - \textrm
- $(\cdot)^{T}$ or $(\cdot)^{\mathrm{T}}$ - your choice
- Hom - \mathbf
- v - \mathbf - but should it be?
- \mathbb{R} - \mathbb

What does LATEX do with maths alphabets?

$$
\begin{gathered}
R e=\frac{\rho v \cos (\theta)}{L} \quad \text { for } 0 \leq \theta<\pi / 2 \\
H \sim \operatorname{Hom}(Z) \\
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right]^{T} \quad \mathbf{k} \in \mathbb{R}^{3}
\end{gathered}
$$

What are the different fonts here?

- ρv etc - \mathnormal
- Re- \mathit
- cos - \mathrm (actually \operator@font)
- 'for ...' - \textrm
- $(\cdot)^{T}$ or $(\cdot)^{\mathrm{T}}$ - your choice
- Hom - \mathbf
- v - \mathbf - but should it be?
- \mathbb{R} - \mathbb

What does LATEX do with maths alphabets?

$$
\begin{gathered}
R e=\frac{\rho v \cos (\theta)}{L} \quad \text { for } 0 \leq \theta<\pi / 2 \\
H \sim \operatorname{Hom}(Z) \\
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right]^{T} \quad \mathbf{k} \in \mathbb{R}^{3}
\end{gathered}
$$

What are the different fonts here?

- ρv etc - \mathnormal
- Re - \mathit
- cos - \mathrm (actually \operator@font)
- 'for ...' - \textrm
- $(\cdot)^{T}$ or $(\cdot)^{\mathrm{T}}$ - your choice
- Hom - \mathbf
- v - \mathbf - but should it be?
- \mathbb{R} - \mathbb

What does LATEX do with maths alphabets?

$$
\begin{gathered}
R e=\frac{\rho v \cos (\theta)}{L} \quad \text { for } 0 \leq \theta<\pi / 2 \\
H \sim \operatorname{Hom}(Z) \\
\mathbf{k}=\left[k_{x}, k_{y}, k_{z}\right]^{T} \quad \mathbf{k} \in \mathbb{R}^{3}
\end{gathered}
$$

What are the different fonts here?

- ρv etc - \mathnormal
- Re - \mathit
- cos - \mathrm (actually \operator@font)
- 'for ...' - \textrm
- $(\cdot)^{T}$ or $(\cdot)^{\mathrm{T}}$ - your choice
- Hom - \mathbf
- v - \mathbf - but should it be?
- \mathbb{R} - \mathbb

Maths alphabet fonts

- Many many alphabet styles used in mathematics
- $\mathrm{T}_{\mathrm{E} X}$ achieved this by switching fonts
- In Unicode mathematics, these are all in the one font
- Or are they?

What's missing?

- Unicode mathematics has a few potential gaps
- To date, no provision for 'text spacing' (v maths)
- Although it's up to the font designer, symbols in UM fonts are kerned as single-letter variables.
- Ramifications:
- Upright roman not spaced for text $(\sin x)$
- Italic roman not spaced for text (Re)
- Bold roman not spaced for text (Hom)

What's missing?

- Unicode mathematics has a few potential gaps
- To date, no provision for 'text spacing' (v maths)
- Although it's up to the font designer, symbols in UM fonts are kerned as single-letter variables.
- Ramifications:
- Upright roman not spaced for text $(\sin x)$
- Italic roman not spaced for text (Re)
- Bold roman not spaced for text (Hom)

Unfortunately, unicode-math has been calling these \mathrm, \mathit, and \mathbf for many years.

This gives a good excuse for a talk

- Historical/interesting examples of mathematics
- How unicode-math works, $T_{E} X$-nically
- Fixing the alphabet problem

Overview of Unicode Mathematics

Historical and current examples
Sidenote: symbols

\mathrm with maths spacing

Historical example

Up to the critical point

$$
\mathrm{A}_{c} \frac{\mathrm{D}^{3}}{\mathrm{P}^{2}} i=\mathrm{B}_{c} \frac{\mathrm{D} v}{\mathrm{P}}
$$

After the critical point is passed the law is complex until a velocity which is $1 \cdot 325 v_{c}$ is reached. Then as shown in the homologues the curve assumes a simple character again

$$
\mathrm{A} \frac{\mathrm{D}^{3}}{\mathrm{P}^{2}} i=\left(\mathrm{B} \frac{\mathrm{D} v}{\mathrm{P}}\right)^{1 \cdot 723}
$$

Osborne Reynolds. "An Experimental Investigation of the Circumstances Which Determine Whether the Motion of Water Shall Be Direct or Sinuous, and of the Law of Resistance in Parallel Channels". In: Phil. Trans. R. Soc. Lond. 174 (1883), pp. 935-982.
DoI: 10.1098/rstl. 1883.0029

\mathrm with maths spacing

Modern example

$$
\frac{d}{d t} U(t)^{2}=2 U(t) K\left[\mathrm{e}^{A \hat{D}(t)} \dot{X}(t)+\dot{\hat{D}}(t) G_{1}(t)+\frac{\hat{D}(t)}{D} G_{2}(t)\right]
$$

Miroslav Krstić. Delay Compensation for Nonlinear, Adaptive, and PDE Systems.
Birkhäuser Boston, 2009. DoI: 10.1007/978-0-8176-4877-0

Also note

$$
\frac{d}{d t} \quad \text { vs } \quad \frac{\mathrm{d}}{\mathrm{~d} t}
$$

e and e

$$
\operatorname{Proj}_{\Pi}\left\{\tau_{\theta}\right\}=\tau_{\theta} \begin{cases}I, & \hat{\theta} \in \Pi \text { ㅇ or } \nabla_{\hat{\theta}} \mathscr{P}^{T} \tau \leq 0, \\ I-\frac{\nabla_{\hat{\hat{~}}} \mathscr{P}_{\mathscr{P}_{\theta}} \mathscr{P}^{T}}{\nabla_{\hat{\boldsymbol{P}}} \mathscr{P}^{T} \nabla_{\theta} \mathscr{P}}, & \hat{\theta} \in \partial \Pi \text { and } \nabla_{\hat{\theta}} \mathscr{P}^{T} \tau>0,\end{cases}
$$

for the vector (plant parameter) case.
The transformed state of the actuator is

$$
\begin{aligned}
w(x, t)= & e(x, t)-\hat{D}(t) \int_{0}^{x} K(\hat{\theta}) \mathrm{e}^{A(\hat{\theta}) \hat{D}(t)(x-y)} B(\hat{\theta}) e(y, t) d y \\
& -K(\hat{\theta}) \mathrm{e}^{A(\hat{\theta}) \hat{D}(t) x} \tilde{X}(t)
\end{aligned}
$$

\math rm with text spacing

As indicated above in Section 2.1, D'Arcy Thompson used the Froude number to compare the walking speeds of different sized characters in Gulliver's Travels. This is clearly one of the major benefits of the Froude number, with the primary application being in the study of children's gait [1,2,32,41-44]. Alexander [32] showed that when dimensionless stride length was plotted as a function of dimensionless speed β where
$\beta=v /(g L)^{1 / 2}=(\mathrm{Fr})^{1 / 2}$
then data for children aged over 4 years were the same as adults. He used this empirical relationship to predict

Christopher L. Vaughan and Mark J. O'Malley. "Froude and the contribution of naval architecture to our understanding of bipedal locomotion". In: Gait \& Posture 21.3 (2005), pp. 350-362. Doı: 10.1016/j.gaitpost. 2004.01.011

\mathrm with text spacing

He hypothesised, and provided the necessary experimental evidence to demonstrate, that animals meet these five criteri a when they travel at speeds that translate to equal values of Fr [3.]. Evidence in support of criterion 3 has been pre ented in Fi . 7 a , wh le the data for criterion 2 may be seen in Fig. 7b. At $F r$ va ues below 2, the phase differences lie between 0.4 and 0.5 , and the animals utilise symmetri-

[^0]
\mathrm with text spacing

$$
u(y, t)=\operatorname{Re}\left(i \frac{P_{x}}{\rho n}\left\{1-\frac{\cosh [(1+i) \sqrt{(n / 2 v} y]}{\cosh [(1+i) \sqrt{(n / 2 v} a]}\right\} e^{i n t}\right)
$$

From the geometry of the element as it appears at time $t=\delta t$,

$$
\begin{aligned}
\delta \alpha & =\tan ^{-1}\left(\frac{y \text { component of } D^{\prime} C^{\prime}}{x \text { component of } D^{\prime} C^{\prime}}\right) \\
& =\tan ^{-1}\left\{\frac{\left[v\left(\frac{1}{2} \delta x,-\frac{1}{2} \delta y\right) \delta t+\cdots\right]-\left[v\left(-\frac{1}{2} \delta x,-\frac{1}{2} \delta y\right) \delta t+\cdots\right]}{\delta x+\cdots}\right\}
\end{aligned}
$$

I. G. Currie. Fundamental Mechanics of Fluids. Third Edition. Marcel Dekker, 2003

Where is \mathbf used?

12. It is sometimes convenient in special problems to employ a system of rectangular axes which is itself in motion. The motion of this frame may be specified by the component velocities $\mathbf{u}, \nabla, \mathbf{w}$ of the origin, and the component rotations $\mathbf{p}, \mathbf{q}, \mathbf{r}$, all referred to the instantaneous positions of the axes. If u, v, w be the component velocities of a fluid particle at (x, y, z), the rates of change of its co-ordinates relative to the moving frame will be

$$
\begin{equation*}
\frac{D x}{D t}=u-\mathbf{u}+\mathbf{r} y-\mathbf{q} z, \frac{D y}{D t}=v-\mathbf{v}+\mathbf{p} z-\mathbf{r} x, \frac{D z}{D t}=w-\mathbf{w}+\mathbf{q} x-\mathbf{p} y . \ldots(\tag{1}
\end{equation*}
$$

After a time δt the velocities of the particle parallel to the new positions of the co-ordinate axes will have become

$$
\begin{equation*}
u+\left(\frac{\partial u}{\partial t}+\frac{\partial u}{\partial x} \frac{D x}{D t}+\frac{\partial u}{\partial y} \frac{D y}{D t}+\frac{\partial u}{\partial z} \frac{D z}{D t}\right) \delta t, \& c ., \& c . \tag{2}
\end{equation*}
$$

Horace Lamb. Hydrodynamics. Fourth Edition. Cambridge University Press, 1916

Where is \mathbf used?

In the first step, the integration takes place over the surface of the first magnet S_{1}, which is written for the charge model as

$$
\begin{equation*}
\mathbf{B}_{1}\left(\mathbf{x}_{2}\right)=\frac{\mu_{0}}{4 \pi} \oint_{S_{1}}\left[\mathbf{M}_{1} \cdot \hat{\mathbf{n}}_{s_{1}}\right] \frac{\mathbf{x}_{2}-\mathbf{x}_{1}}{\left|\mathbf{x}_{2}-\mathbf{x}_{1}\right|^{3}} \mathrm{~d} s_{1} \tag{2.11}
\end{equation*}
$$

and for the current model as

$$
\begin{equation*}
\mathbf{B}_{1}\left(\mathbf{x}_{2}\right)=\frac{\mu_{0}}{4 \pi} \oint_{S_{1}}\left[\mathbf{M}_{1} \times \hat{\mathbf{n}}_{s_{1}^{\prime}}\right] \times \frac{\mathbf{x}_{2}-\mathbf{x}_{1}}{\left|\mathbf{x}_{2}-\mathbf{x}_{1}\right|^{3}} \mathrm{~d} s_{1}^{\prime} \tag{2.12}
\end{equation*}
$$

where $\hat{\mathbf{n}}$ is the normal vector from the differential surface of integration $\mathrm{d} s$.

William S P Robertson. "Modelling and design of magnetic levitation systems for vibration isolation". PhD thesis. The University of Adelaide, 2013

Where is \mathbf used?

on $\mathbf{G r p}$ to the factor-commutator functor $\mathbf{G r p} \rightarrow \mathbf{A b} \rightarrow \mathbf{G r p}$. Moreover, p is natural, because each group homomorphism $f: G \rightarrow H$ defines the evident homomorphism f^{\prime} for which the following diagram commutes:

The double character group yields a suggestive example in the category $\mathbf{A b}$ of all abelian groups G. Let $D(G)$ denote the character group of G, so that $D G=\operatorname{hom}(G, \mathbf{R} / \mathbf{Z})$ is the set of all homomorphisms $t: G \rightarrow \mathbf{R} / \mathbf{Z}$ with the familiar group structure, where \mathbf{R} / \mathbf{Z} is the additive group of real numbers modulo 1. Each arrow $f: G^{\prime} \rightarrow G$ in $\mathbf{A b}$ determines an arrow $D f: D G \rightarrow D G^{\prime}$ (opposite direction!) in $\mathbf{A b}$, with $(D f) t=t f: G^{\prime} \rightarrow \mathbf{R} / \mathbf{Z}$ for each t; for composable arrows,

Overview of Unicode Mathematics

Historical and current examples
Sidenote: symbols

TEX's methods
and the estimation error vector

$$
\begin{equation*}
\epsilon=\varepsilon+\mho_{0}-\mho^{\mathrm{T}} \hat{\theta} \tag{9.266}
\end{equation*}
$$

result in the static parametric model

$$
\begin{equation*}
\epsilon=\mho^{\mathrm{T}} \tilde{\theta}+\tilde{\epsilon} \tag{9.267}
\end{equation*}
$$

where $\tilde{\epsilon} \triangleq \varepsilon+\mho_{0}-\mho^{\mathrm{T}} \theta$ is governed by

$$
\begin{equation*}
\dot{\tilde{\epsilon}}=\left(A_{o}-\kappa_{o}|\omega|^{2} l e_{1}^{\mathrm{T}}\right) \tilde{\epsilon} . \tag{9.268}
\end{equation*}
$$

Since only $\varepsilon_{1}=y-\hat{\chi}_{1}$ is measured, only the first component of ϵ would be implemented as the estimation error:

$$
\begin{equation*}
\epsilon_{1}=\varepsilon_{1}+\mho_{1,0}-\mho_{1}^{\mathrm{T}} \hat{\theta} \tag{9.269}
\end{equation*}
$$

Consider the class of strict-feedforward systems given by

$$
\begin{aligned}
\dot{x}_{1} & =x_{2}+\sum_{j=2}^{n-1} \pi_{j}\left(x_{j}\right) x_{j+1}+\pi_{n}\left(x_{n}\right) u \\
\dot{x}_{i} & =x_{i+1}, \quad i=2, \ldots, n-1 \\
\dot{x}_{n} & =u
\end{aligned}
$$

where $\pi_{j}(0)=0$. Any system in this class is DECI.
where $A(x, t)$ is exponentially stable for each x continuous in t. Combining (6.76) and (6.78), we define $\mathcal{Y}=x+\Omega_{0}$ so that

$$
\begin{equation*}
\dot{\mathcal{Y}}=A(x, t) \mathcal{Y}+F(x, u)^{\mathrm{T}} \theta . \tag{6.80}
\end{equation*}
$$

Since θ is constant, it follows that

$$
\begin{equation*}
\mathcal{Y}=\Omega^{\mathrm{T}} \theta+\tilde{\epsilon}, \tag{6.81}
\end{equation*}
$$

where $\tilde{\epsilon} \triangleq x+\Omega_{0}-\Omega^{\mathrm{T}} \theta$ is exponentially decaying because it is governed by

$$
\begin{equation*}
\dot{\tilde{\epsilon}}=A(x, t) \tilde{\epsilon}, \quad \tilde{\epsilon} \in \mathbb{R}^{n} . \tag{6.82}
\end{equation*}
$$

of Σ_{1} sets doubly universal for Σ_{1} sets. Now this pair can be reduced, as argued above, to yield two disjoint Σ_{1} sets which are not separable even by a $\Sigma_{1} \cap \boldsymbol{\Pi}_{1}$ set. The same aromment can be applied to actually name two disioint Σ_{k+1} sets Π_{1}^{1} sets, Σ_{k+1}^{1} sets not separable by $\mathbf{\Sigma}_{k+1} \cap \boldsymbol{H}_{k+1}$ sets (by $\mathbf{\Sigma}_{1}^{1} \cap \boldsymbol{\Pi}_{1}^{1}$)ets, by $\boldsymbol{\Sigma}_{k+1}^{1} \cap \boldsymbol{H}_{k+1}^{i}$ sets), for $k \geqslant 1$. Similar strong forms of the negation of the second separation principle can likewise be obtained at all levels.

For some θ an argument similar to the above can be applied, however. We illustrate with the case where C is finite. Here we can choose a $\Sigma_{1}^{[0]}$ subset of $9^{n+1,0}$ universal for the $\Sigma_{1}^{[C]}$ subsets of $9 C^{n, 0}$, whereas the diagonal argument does prevent the existence of a $\Sigma_{1}^{[C]} \cap \Pi_{1}^{[C]}$ subset of $C^{n+1,0}$ wniversal for $\sum_{1}^{[C]} \cap \Pi_{1}^{[C]}$ subsets of $\chi^{n, 0}$. So we can conclud $\overline{\operatorname{Sep}}_{\mathrm{I}}\left(\sum_{1}^{[C]}\right)$ is before. Similar arguments work, of course, at all levels of tne O-arithmetical and O-analytical hierarchies with finite C.

$$
\begin{aligned}
\frac{\partial|\operatorname{det} g|}{\partial g_{\mu \nu}} & =|\operatorname{det} g|\left(g^{-1}\right)^{\mu \nu}, \\
\frac{\partial\left(g^{-1}\right)^{\kappa \lambda}}{g_{\mu \nu}} & =-\left(g^{-1}\right)^{\kappa \mu}\left(g^{-1}\right)^{\lambda \nu}, \\
\zeta_{(2)}^{2} & =|\operatorname{det} \mathcal{F}||\operatorname{det} g|^{-1}, \\
\left(g^{-1}\right)^{\kappa \lambda} \mathcal{F}_{\mu \kappa}{ }^{\star} \mathcal{F}_{\nu \lambda} & =\psi_{(2)} g_{\mu \nu}, \\
\frac{\partial \psi_{(1)}}{\partial g_{\mu \nu}} & =-g_{\kappa \lambda} \mathcal{F}^{\# \mu \kappa} \mathcal{F}^{\# \nu \lambda}, \\
\frac{\partial \psi_{(2)}}{\partial g_{\mu \nu}} & =-\frac{1}{2} \zeta_{(2)}\left(g^{-1}\right)^{\mu \nu},
\end{aligned}
$$

Jared Speck. "The global stability of the Minkowski spacetime solution to the Einstein-nonlinear system in wave coordinates". In: Analysis \& PDE 7.4 (2014),
pp. 771-901. DoI: 10.2140/apde.2014.7.771
Courtesy http://math.stackexchange.com/a/1250067/2961

Dr. Seuss. On Beyond Zebra! Random House, 1955

Courtesy http://math.stackexchange.com/a/1197641

Overview of Unicode Mathematics

Historical and current examples
Sidenote: symbols

TEX's methods

Setting up maths in plain (Xe/Lua) $T_{E} X$

Define some fonts:
\font\Urm = "[texgyrepagella-regular.otf]:color=AA00AA"
\font\Ubf = "[texgyrepagella-bold.otf] :color=0000FF"
\font\Uit = "[texgyrepagella-italic.otf] :color=00AA00"
\font\Umm = "[texgyrepagella-math.otf] :color=FF0000"
Which produces: $\mathbf{r m} \mathbf{b f}$ it mm
(Remember: red is the maths font in particular)

Now set up some maths families

\newfam\Urmfam
\newfam\Ubffam
\newfam\Uitfam

\textfont \backslash Urmfam \backslash Urm
\textfont \Ubffam\Ubf
\textfont\Uitfam\Uit
\textfont1 1 mm
(\textfont1 just means default symbols)

Switching to these fonts?

\$\$
$a+b+c$ \quad $\alpha+\beta+\gamma$
\$\$
\$\$
$\{\backslash f a m \backslash U r m f a m$ abc $\alpha \beta \gamma\}$ \quad
$\{\backslash f a m \backslash U i t f a m$ abc $\alpha \beta \gamma\}$ \quad
$\{\backslash f a m \backslash U b f f a m$ abco $\beta \gamma\}$
\$\$

$$
\begin{gathered}
a+b+c++ \\
a b c \quad a b c \alpha \beta \gamma \quad \mathbf{a b c}
\end{gathered}
$$

(What's going on with symbols?)

Remap to Unicode

\Umathcode`\a = 71 "1D44E \(\backslash\) relax \Umathcode`\b = 71 "1D44F \backslash relax
\Umathcode`\c = 71 "1D450\relax \Umathcode` $\backslash \alpha=71$ "1D6FC \backslash relax
\backslash Umathcode` \(\backslash \beta=71\) "1D6FD \(\backslash\) relax \Umathcode` $\backslash Y=71$ "1D6FE 7 relax

$$
a+b+c \quad \alpha+\beta+\gamma
$$

("1D44E is Unicode Plane 1 mathematical small a)

Remap to elsewhere in Unicode

$$
a+b+c \quad \alpha+\beta+\gamma
$$

("1D44E is Unicode Plane 1 mathematical small a)

Rundown so far

- Maths is not like text
- In text, an input char, say 'ascii a' (U+97) is represented at the same code-point in the current font
- In maths, an input char is (luckily!) mapped to whatever code-point we like!
- In this case, input char U+97 \rightarrow font glyph U+1D44E

But what about alphabets?

Traditional TEX

This is very different than traditional $T_{E} X$ maths where we have a number of maths fonts with different shapes in ascii slots:

- e.g., input char $\mathrm{A}_{65} \rightarrow A_{65}$ maths font (\mathnormal)
- e.g., input char $\mathrm{A}_{65} \rightarrow \mathbf{A}_{65}$ bold font (\mathbf)
- e.g., input char $\mathrm{A}_{65} \rightarrow \mathcal{A}_{65}$ cal font (\backslash mathcal)

But what about alphabets?

 Unicode mathematicsNow we need to map within the same font:

- e.g., input char $\mathrm{A}_{65} \rightarrow A_{1 \mathrm{D} 434}$ maths font (\backslash mathnormal)
- e.g., input char $\mathrm{A}_{65} \rightarrow \mathbf{A}_{1 \text { D400 }}$ maths font (\mathbf)
- e.g., input char $\mathrm{A}_{65} \rightarrow \mathcal{A}_{1 \mathrm{D} 49 \mathrm{C}}$ maths font (\backslash mathcal)

But what about alphabets?

Unicode mathematics

The naive approach (up until now):

- Ignore classical $T_{E X}$ maths; Unicode is the future!
- \mathcal maps to calligraphic range.
- \mathfrak maps to fraktur range.
- \mathbf maps to bold upright symbols. (Maybe okay?)
- \mathit maps to math italic symbols. (Not okay!)

Impedance mismatch between what $T_{E X}$ users use and what Unicode mathematics provides.

Kerning

The big problem here:

- \mathbf traditionally uses a text font (why not?)
- \mathit traditionally uses a text font (needed!)
- \mathtt traditionally uses a text font
- \mathsf traditionally uses a text font

Where is \mathbf used?

- It's not just one thing!
- Single symbols with math-like spacing
- Multi-letter names with text-like spacing

Unicode only provides for the first.
LATEX sort of only provides the second.

What about \mathit?

LATEX defines:

- \mathnormal - italic symbols with maths spacing
- \textit - italic letters with text spacing and text behaviour
- \mathit - italic w. text spacing and maths behaviour

These could all be separate fonts. Unicode only provides for the \mathnormal case.

Similarly \mathrm

LATEX defines upright roman letters:

- \textrm - with text spacing and text behaviour
- \mathrm - with text spacing and maths behaviour

These could all be separate fonts. Unicode only provides for ???.
Up to the font designer.

This is LATEX $2_{\varepsilon}+$ amsmath

- \mathnormal
- \mathit
- \mathrm
- \mathbf
- \mathsf
- \mathtt
- \mathcal
- \mathfrak
\boldsymbol / bm allowed for bold in many cases too.

Categories of alphabets in Unicode

Unambiguous:

- bb, bbit, scr, bfscr, cal, bfcal, frak, bffrak

Ambiguous:

- rm, it, tt, bfup, bfit, sfup, sfit, bfsfup, bfsfit, bfsf

I called these \mathrm, \mathit, etc., and that was ...

...a poor decision

As discussed:

- '\mathit' ALWAYS (in practice) used for Re, Fr, ... So unicode-math's definition for \backslash mathit is no good.
- 'bf' might be for $\mathbf{a} \times \mathbf{b}$ or $\operatorname{Hom}(\cdot)$ So UM's definition for \mathbf (and \mathrm, \mathsf, \mathtt) potentially wrong.
- So what to do?

Switching to symbol ranges

- ALL mapping ranges are defined with new commands \symbb, \symcal, \symbf, etc. etc.
- ALL traditional LATEX font switches are given alias names \mathtextrm, \mathtextit, \mathtextbf, etc.
- Unambiguous ranges: \mathfrak:=\symfrak
- By default: \mathbf $:=$ \mathtextbf (i.e., as per LATEX 2)
- Package options (mathbf=sym) to switch

Tell me about these symbol ranges

- \symliteral switches to 'literal' input syntax.
- \symbf follows $\mathrm{T}_{\mathrm{E}} \mathrm{X}$ or 'ISO' conventions with upright latin and italic greek letters.
- \symsf switches to upright or italic sans serif according to a package option.

Tell me about these symbol ranges

Continued

- \symbfit, \symbfup, \symsfit, \symsfup can be used where needed.
- Why is \symtt not aliased to \mathtt?

Few slots; if you want your code font and your typewriter maths font to match, you're better off sticking with traditional \mathtt.

- There is no contextual math style yet; \symbf\{\symsf\{X\}\} does NOT produce \symbfsf\{X\}. It probably should.

Undoing the mapping for \DeclareMathAlphabet

- Latest version of unicode-math 'fixes' \backslash DeclareMathAlphabet.
- This is what allows the distinction between \mathXYZ and $\backslash s y m X Y Z$.
- Necessary for using character shapes outside of Unicode.
- Requires some care hacking the NFSS.
- 'User-level' interface etmathfontface.\documentclass\{article\}\usepackage\{unicode-math\}\setmathfont\{texgyrepagella-math.otf\}[Scale=0.85]\setmathfontface\mathchor\{texgyrechorus-mediumitalic.otf\}\setoperatorfont\mathchor\begin\{document\}}\undefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefinedundefined

$$
(\backslash \sin x)^{\wedge} 2+(\backslash \cos x)^{\wedge} 2=1
$$

\]

\end\{document\} }

$$
(\sin x)^{2}+(\cos x)^{2}=1
$$

13.7.C. EXERCISE. Suppose

$$
\text { (13.7.1.1) } \quad 0 \rightarrow \mathscr{F} \rightarrow \mathscr{G} \rightarrow \mathscr{H} \rightarrow 0
$$

is an exact sequence of quasicoherent sheaves on a scheme X, where \mathscr{H} is a locally free quasicoherent sheaf, and suppose \mathscr{E} is a quasicoherent sheaf. By left-exactness of $\mathfrak{H o m}$ (Exercise 2.5.H),

$$
0 \rightarrow \mathcal{H o m}(\mathscr{H}, \mathscr{E}) \rightarrow \mathcal{H o m}(\mathscr{G}, \mathscr{E}) \rightarrow \mathcal{H o m}(\mathscr{F}, \mathscr{E}) \rightarrow 0
$$

is exact except possibly on the right. Show that it is also exact on the right. (Hint: this is local, so you can assume that X is affine, say $\operatorname{Spec} A$, and $\mathscr{H}=\widetilde{A^{\oplus n}}$, so (13.7.1.1) can be written as $0 \rightarrow M \rightarrow N \rightarrow A^{\oplus n} \rightarrow 0$. Show that this exact sequence splits, so we can write $N=M \oplus A^{\oplus n}$ in a way that respects the exact sequence.) In particular, if $\mathscr{F}, \mathscr{G}, \mathscr{H}$, and \mathscr{O} x are all coherent, and \mathscr{H} is locally free, then we have an exact sequence of coherent sheaves

$$
0 \rightarrow \mathscr{H}^{\vee} \rightarrow \mathscr{G}^{\vee} \rightarrow \mathscr{F}^{\vee} \rightarrow 0
$$

Ravi Vakil. Foundations of Algebraic Geometry. Lecture Notes. Stanford University, 2015. URL: http://math.stanford.edu/~vakil/216blog/

From \mathnormal to \mathXYZ

As discussed above, we have default mapping set up

- e.g., input char $\mathrm{A}_{65} \rightarrow A_{1 \text { D434 }}$ maths font

When we switch to \backslash mathXYZ (such as \backslash mathit), we need to undo this mapping so we can revert to

- e.g., input \backslash mathbf $\left\{\mathrm{A}_{65}\right\} \rightarrow \mathbf{A}_{65}$ bold maths font

Inside the NFSS

Briefly

\cs_set:Npn \use@mathgroup \#1 \#2
\{
\mode_if_math:T
\{
\math@bgroup
\cs_if_eq:cNF \{M@\f@encoding\} \#1 \{\#1\}
__um_switchto_literal:
\mathgroup \#2 \relax
\math@egroup
\}
\}

Downside to this approach

- All this symbol remapping doesn't come for free.
- The literals mapping is probably not yet complete, but it current reads:

- This adds approx $100 \times$ overhead to the font switch. (hundreds of microseconds per)

Summary

$\sum \varepsilon$ opӨokavovıkó oúotqua a̧óv ωv Oxy, av عívaı $\omega=x \widehat{O} z$,
 ঠıароретіко́ aпо́ то O, то́тв:
$\rho=O M=\sqrt{x^{2}+y^{2}}$ кaı $\eta \mu \omega=\frac{y}{\rho}, \sigma u v \omega=\frac{x}{\rho}, \varepsilon \varphi \omega=\frac{y}{x}$.
П. Х. av $M(1,2)$, то́т $\rho=\sqrt{1^{2}+2^{2}}=\sqrt{5}$,

$$
\eta \mu \omega=\frac{2}{\sqrt{5}}=\frac{2 \sqrt{5}}{5}, \quad \sigma \cup v \omega=\frac{1}{\sqrt{5}}=\frac{\sqrt{5}}{5}, \quad \varepsilon \varphi \omega=\frac{2}{1}=2
$$

(Thanks to Apostolos Syropoulis for the reference.)

\setmainfont\{Kurier-Regular.otf\}
\setmathfont\{texgyrepagella-math.otf\}[Scale=0.85]
\
\backslash mathrm $\{\eta \mu\}(\omega)=\backslash f r a c\{y\}\{\rho\}$
\]

But probably \mathrm should now be called \mathup!
(My friend Nino says 'rm' means remove; cf. GNU/Linux.)

'Sha'

Now introduce

$$
\mathrm{II}_{p}(x)=\sum_{k=-\infty}^{\infty} \delta(x-k p),
$$

so that, simply,

$$
\rho_{p}=\Pi_{p} * \rho .
$$

Π_{p} is the star of the show. Bracewell calls it the "shah function", after the Cyrillic letter, and this has caught on. It's also referred to as the Dirac comb (with spacing p).

Brad Osgood. The Fourier Transform and its Applications. Lecture Notes. Stanford University, 2008
7.1. Visible Ш Table 1. Table 1 on page 11 lists sixteen pairs of newforms f and g (of equal weights and levels) along with at least one prime q such that there is a prime $\mathfrak{q} \mid q$ with $f \equiv g(\bmod \mathfrak{q})$. In each case, $\operatorname{ord}_{s=k / 2} L(g, k / 2) \geq 2$ while $L(f, k / 2) \neq 0$. The notation is as follows. The first column contains a label whose structure is

> [Level]k[Weight][GaloisOrbit]

Neil Watkins, William Dummigan, and Mark Stein. "Constructing elements in Shafarevich-Tate groups of modular motives". In: Number theory and algebraic geometry 303 (2003)
\setmathfont\{texgyrepagella-math.otf\}[Scale=0.85] \setmathfontface\mathcyr\{Charter Roman\}
\
р_p = \mathcyr\{ய\}_p \ast ρ \qquad
\backslash dot $\{\backslash$ mathcyr $\{y\}\}=A(x, t) \backslash m a t h c y r\{y\}+F(x, u) \theta$
\qquad $y=m x+c$
\]

$\rho_{p}=Ш_{p} * \rho \quad \dot{\mathrm{y}}=A(x, t) \mathrm{y}+F(x, u) \theta \quad y=m x+c$

New commands to differentiate maths and text

Input characters: 'abc ffi'

\textrm abc ffi	\textit $a b c$ ffi	\textbf abc ffi	\textsf abc ffi	\texttt abc ffi
\mathrm abcffi	$\begin{aligned} & \text { \mathit } \\ & a b c f f i \end{aligned}$	$\backslash m a t h b f$ abcffi	\mathsf abcffi	\mathtt abcffi
\backslash symup abcffi	\symit $a b c f f i$	\backslash \symbf abcffi	\symsf abcffi	\symtt abcffi

fin

[^0]: Christopher L. Vaughan and Mark J. O'Malley. "Froude and the contribution of naval architecture to our understanding of bipedal locomotion". In: Gait \& Posture 21.3
 (2005), pp. 350-362. DoI: 10.1016/j.gaitpost. 2004.01.011

