
preliminary draft, September 15, 1999 0:07 preliminary draft, September 15, 1999 0:07

TUGboat, Volume 0 (2001), No. 0 preliminary draft, September 15, 1999 0:07 1001

A regression test suite for LATEX 2ε
Frank Mittelbach

Abstract

This paper describes the history of the development
of a regression test suite for LATEX and its impor-
tance for the release of stable and reliable future
distributions of that software. A more detailed de-
scription of the concepts and the implementation of
the test suite will be given in [1].

As experience shows that there can’t be enough
test files in such a suite, we make a plea to the TEX
community to help us in making LATEX distributions
even more reliable by joining a new volunteer group
working on the task of updating and adding to this
suite.

1 Introduction

Back in 1992 when the LATEX3 team took over main-
tenance of LATEX and started to work on the current
LATEX version [3], also known as LATEX 2ε, I had the
idea of producing a test environment for LATEX that
would help us in providing stable and reliable dis-
tributions. My idea originated in the trip test for
the TEX program [2], a fixed test file which is run
through TEX, containing code that tries to exercise
as many boundary cases as Don Knuth could think
of. The output of this run is then compared with
a set of files certified by Don to contain the correct
information. Only if a new implementation of the
TEX program produces the same output (with well
defined minor deviations in certain places) is it al-
lowed1 to be called TEX. The idea behind this is
to ensure that TEX behaves identically on all im-
plementations and the trip test was the measure
proving this.

With LATEX the idea was not to ensure that it is
identical on all platforms — this is automatically the
case if the standard installation is obtained and the
installation procedures are applied — but to ensure
that that new releases of LATEX do not inadvertently
modify the behavior of commands. Since LATEX is a
large and complex system, this is definitely a non-
trivial task: in ‘fixing’ one bug, it is often necessary
to modify the definitions of several ‘internal’ com-
mands, and these may in turn affect many other

1 An additional requirement according to the trip test
documentation is that the author of the TEX implementation
has to be satisfied with the product. In other words, a simple
program that throws away all its input and always output
the files needed to satisfy the trip test would be allowed to
call itself TEX as long as the author of that program is happy
with it.

commands which have no obvious connection with
the original problem.

We have had some pretty disastrous experiences
of this type, often finding that harmless looking cor-
rections had effects on what seemed, at first glance,
completely unrelated areas. This is in part due to
the fact that LATEX is based on the macro language
of TEX, which allows reuse and redefinition of arbi-
trary code fragments.

For that reason we started working on a concept
for automated tests to detect such problems. When
that system was available, we asked for volunteers to
help us in building up a suitable test suite for LATEX
(which at that time was LATEX 2.09). Part of the ra-
tionale behind this work was to ensure that a future
transition from LATEX 2.09 to LATEX 2ε (for which
development was under way) would become as pain-
less as possible, i.e., these tests were also supposed
to ensure that the new code for LATEX 2ε would not
change the user interface behavior without detec-
tion.

This approach seems to us to have been very
successful; this is in large parts due to the quality
and quantity of the work of the volunteers helping
us at that time, in particular Daniel Flipo and Chris
Martin. Figure 1 shows an excerpt from the volun-
teer task list from 1993 describing this task (and my
rather optimistic time requirements for it).

When LATEX 2ε was released for the first time in
1994 we updated the regression test support macros
and tried to improve the test suite by adding new
test files when we fixed bugs or when we added new
functionality to LATEX. However, being human, we
have not followed this practice as rigorously as we
should have: especially since the first releases it has
become more and more common for us to fix a small
bug without spending the additional time necessary
to also write a test file that exhibits the correct be-
havior.

Today our test suite has about 300 test files
which are automatically executed and compared be-
fore a new release hits the streets. And indeed, these
test files have saved us from embarrassment many
times already.

2 This year’s boo-boos!

However, results show that such a suite can never
be large enough to avoid the need for a patch re-
lease once in a while. It is particularly important
that new features, such as the release of additional
files or the correction of recently found bugs, get
tested and frozen within this suite so that there is
no unexpected change later on. For example, with
the December 1997 release we added the packages



preliminary draft, September 15, 1999 0:07 preliminary draft, September 15, 1999 0:07

1002 preliminary draft, September 15, 1999 0:07 TUGboat, Volume 0 (2001), No. 0

Validating LATEX2.09

Writing test files for regression testing: checking bug fixes and improvements to verify that they don’t
have undesirable side effects; making sure that bug fixes really correct the problem they were intended
to correct; testing interaction with various document styles, style options, and environments.
We would like three kinds of validation files:

1. General documents.
2. Exhaustive tests of special environments/modules such as tables, displayed equations, theorems,

floating figures, pictures, etc.
3. Bug files containing tests of all bugs that are supposed to be fixed (as well as those that are not

fixed, with comments about their status).
A procedure for processing validation files has been devised; details will be furnished to anyone
interested in this task.
Estimated time required: 2 to 3 weeks, could be divided up.
Coordinator [25 August 1992]:
Daniel Flipo flipo@citil.citilille.fr
Other volunteers:
Chris Martin cs1cwm@sunc.sheffield.ac.uk

Figure 1: An excerpt from the volunteer task list 1993

calc and textcomp to the distribution but, due to
time constraints, did not add to the suite additional
test files designed to exercise these packages; and,
by Murphy’s law, textcomp did not contain a nec-
essary \ProvidesPackage command, with the result
that it claimed to be written for a future release2 —
something that would have been caught by any test
file exercising the package.

Another embarrassing example of a missing test
file in that release was the \t error. To better sup-
port language files from the Babel suite, some of
which make the " character active, we changed all
internal definitions of characters and accents from
hexadecimal notation, such as "7F, to decimal, i.e.,
to 127 in that case. Unfortunately in the definition
for \t we did this wrong and "7F became 79, giving
very strange effects when the accent was used.3 An
error like this would have been automatically caught
if we had, for each output encoding, a test file to
check that each definition in the encoding results in
the ‘right’ glyph or glyphs.

2 The technical reason for this behavior, for those who
wonder, was that the release date of the package, which
is an optional argument to the (missing) \ProvidesPackage

command, was there but was mistakenly picked up the
\NeedsTeXFormat which then produced a warning as the re-
lease date of textcomp was later than the nominal release
date (of 1997/12/01) for the format of the distribution.

3 Both errors got found and reported several times within
two days after the release, so the patch release came out quite
quickly this time.

3 Call for volunteers

Thus to make the LATEX system even more reliable
we call on you for help! What we hope to find is a
new group of volunteers that is interested in work-
ing on an extension of the LATEX test suite system.
There is no need to be an expert TEX or LATEX pro-
grammer for this task though some experience with
LATEX and its inner workings will be necessary.

If you are interested in joining this effort,
please contact Daniel Flipo at

Daniel.Flipo@univ-lille1.fr

who kindly agreed to act as a coordinator
between the individual volunteers.

There are a number of areas in which further
test files would improve the system enormously. They
are outlined in the following sections.

3.1 Testing existing interfaces

Testing existing interfaces is a very important task,
one not so far, for several reasons, adequately cov-
ered by the test suite. This will not only help us
to detect problems when fixing errors in LATEX but,
more importantly, it will help one day in the tran-
sition to a new system since these test files will
then clearly identify which interfaces are compro-
mised (deliberately or by mistake) by the new sys-
tem. This in turn will then help to produce, if nec-
essary, procedures to automatically translate source
documents from LATEX to its successor.



preliminary draft, September 15, 1999 0:07 preliminary draft, September 15, 1999 0:07

TUGboat, Volume 0 (2001), No. 0 preliminary draft, September 15, 1999 0:07 1003

What we are looking for are test files that de-
scribe and test the current interfaces on all levels.
This is certainly an ambitious task, but perhaps
also one of the most interesting and rewarding ones
within this list.

3.2 Testing corrected bugs

As described above, several of the bugs reported to
us have been fixed and a test file showing the correct
behavior has been added. But for many this is not
the case.

What we are looking for is the provision of test
files for all bugs reported and fixed, so that future
releases will not by mistake revert any of these fixes
without alerting the maintainers. This means work-
ing through our bug database and devising test files
showing the correct behavior. As we ask submit-
ters of bug reports to send in a test file that shows
the incorrect behavior, and they usually do so, it is
often possible to start from the submitted file and
modify it slightly so that it fits into the regression
suite concepts.

3.3 Testing new extensions

What is important for the kernel interfaces is also
important for the core packages and extensions: these
interfaces should be exercised in such a way that
any future changes will be automatically detected.
Again this provides interesting mental exercise since
it isn’t always easy to decide what is pertinent for
the interface and how to exercise it so that enough
(but not too much) information ends up in the .log
file.

3.4 Testing contributed packages

A final area which is important is the testing of pack-
ages which lie outside the control of the LATEX main-
tainers. Although we cannot in all cases guarantee
that corrections to the kernel software will not harm
any such package, we are, of course, very much con-
cerned to avoid making any change that makes third
party packages invalid. In the past, whenever we
noticed (or even suspected) such a problem we tried
either to avoid it, by choosing a different solution,
or, if that was not possible for some reason, to find
the maintainers of the package and give them notice
of a possible clash so that such problems could be
avoided.

There is a problem with testing the interfaces
of third party packages: changes by the package au-
thor, to either the interface or the implementation of
the package, can upset the test suite as easily as can
changes to the LATEX kernel by the LATEX3 project
team. Thus, to avoid our limited time resources be-

ing used up in chasing after errors introduced in this
way (being neither our fault nor being correctable
by us), it would be necessary to develop clear pro-
tocols for how this part of the test suite should be
maintained, e.g., what requirements a package must
fulfill to be included into it, what obligations an au-
thor of such a package agrees to, etc. This is not yet
done and so it is part of the volunteer effort.

We close our plea for help with a quote taken
from [2] which shows how the Grand Wizard sees
the task of writing such test files (which does not
mean you have to follow his advice):

To write such a fiendish test routine, one
simply gets into a nasty frame of mind and
tries to do everything in the unexpected way.
Parameters that are normally positive are set
negative or zero; borderline cases are pushed
to the limit; deliberate errors are made in
hopes that the compiler will not be able to
recover properly from them.

Donald Knuth 1984

References

[1] David Carlisle and Frank Mittelbach. The LATEX
regression test suite: concepts and implementa-
tion. TUGboat; to appear.

[2] Donald E. Knuth. A torture test for TEX. Report
STAN-CS-84-1027, Stanford University, Depart-
ment of Computer Science, Stanford, CA, USA,
1984.

[3] Leslie Lamport. LATEX: A Document Prepara-
tion System. Addison-Wesley, Reading, Massa-
chusetts, second edition, 1994.

� Frank Mittelbach
LATEX3 project
Frank.Mittelbach@eds.com


